Sylph: A Hypernetwork Framework
for Incremental Few-shot Object Detection

Li Yin

Juan M Perez-Rua

Kevin J Liang

Meta Al

{liyin, jmpr, kevinjliang} @fb.com

Abstract

We study the challenging incremental few-shot object de-
tection (iFSD) setting. Recently, hypernetwork-based ap-
proaches have been studied in the context of continuous
and finetune-free iFSD with limited success. We take a
closer look at important design choices of such methods,
leading to several key improvements and resulting in a
more accurate and flexible framework, which we call Sylph.
In particular, we demonstrate the effectiveness of decou-
pling object classification from localization by leveraging
a base detector that is pretrained for class-agnostic local-
ization on large-scale dataset. Contrary to what previous
results have suggested, we show that with a carefully de-
signed class-conditional hypernetwork, finetune-free iFSD
can be highly effective, especially when a large number of
base categories with abundant data are available for meta-
training, almost approaching alternatives that undergo test-
time-training. This result is even more significant consider-
ing its many practical advantages: (1) incrementally learn-
ing new classes in sequence without additional training, (2)
detecting both novel and seen classes in a single pass, and
(3) no forgetting of previously seen classes. We benchmark
our model on both COCO and LVIS, reporting as high as
17% AP on the long-tail rare classes on LVIS, indicating
the promise of hypernetwork-based iFSD.

1. Introduction

While advances in deep learning have led to significant
progress in computer vision [18, 23,24, 31], much of this
success has relied upon large-scale data collection and an-
notation [7,20,22,36], a process that is both labor-intensive
and time-consuming, and does not scale well with the num-
ber of categories. This is especially true for object detec-
tion [18,23, 37], particularly for the long tail of object cat-
egories, where data may be scarcer [22]. As a result, few-
shot learning of object detectors (FSD) [28, 65,70, 72] has
become a recent topic of interest.

While learning a novel class from only a few samples

alone is a challenging problem, the task can be made sim-
pler by leveraging known classes with abundant data (com-
monly referred to as base classes), whose structure can
be used as a prior for knowledge transfer. The few pre-
vious FSD works have approached this primarily in two
ways. The first is fine-tuning [47, 65], where a model is
first pretrained on the base classes and then fine-tuned on
a small balanced set of data from both the base and novel
classes, a form of test-time training [59]. Although sim-
ple, it has difficulty scaling to many real-world applications
due to its computational and memory requirements. An
alternate strategy is taking a meta-learning approach [72].
Meta-learning approaches frame the problem as “learning
to learn” [4,10,32,44,61,69,72], training the model episod-
ically to induce fast adaptation to novel classes.

However, many FSD methods focus on the limited set-up
where only novel categories are to be detected. These meth-
ods often fail to preserve the original detector performance
on base categories [4, 10,32, 72] or forget about the ones
it was initially trained on [65]. Given the ever-changing
nature of the real-world, a desirable property of machine
learning systems is the ability to incrementally learn new
concepts without revisiting previous ones and not forgetting
them [40,42]. Humans are able to achieve such feat, learn-
ing novel concepts not only without forgetting but reusing
such knowledge [45]. Conventional supervised learning
struggles with incrementally presented data, tending to suf-
fer catastrophic forgetting [39,51]. An alternative is study-
ing all the available data every time new concepts arrive,
commonly referred to as “joint training” [22], but such a
paradigm imposes a slow development cycle, requiring sig-
nificant data collection efforts for the new concepts and ex-
pensive large-scale training (and re-training).

Instead, we seek an object detection model capable of
learning new classes from a few shots in a fast, scalable
manner without forgetting previously seen classes, a set-
ting commonly referred to as incremental few-shot detec-
tion iIFSD). ONCE [44], a meta-learning approach to FSD,
is of particular interest due to its hypernetwork-based class-
conditional design. ONCE is able to enroll novel categories

without affecting its ability to remember base classes. We of data, few-shot learning has become an active research
use a base detector and hypernetwork architecture similar talirection, with image classi cation as the most common
ONCE, but with a few key design differences: (1) ONCE, task. Many recent approaches take a meta-learning strat-
along several other recent works [28,65, 72], attempts to di-egy [63]. Optimization-based approaches produce models
rectly produce (via training or hypernet) the parameters of that can quickly learn from few samples [13,41,52]. Metric-

a localization regression model that transforms the querylearning methods learn an embedding function that induces
sample feature maps into the output bounding boxes, alla space where samples can be compared with nearest neigh-

from the few available training samples. We nd this to be bors or other such simple algorithms [33,58,60,64]. Hyper-
unnecessary and potentially harmful, as the task can be signetworks have also been used to predict model parameters
ni cantly simpli ed by decoupling localization from clas- for new classes from limited samples [3, 14,16, 48,50, 66].

si cation. To achieve this goal, we leverage a base detec-We use a hypernetwork in our model to predict convolu-
tor with class-agnostic localization capability pretrained on tional kernels for novel object classi cation. Such a strategy
abundant base class data. (2) We study the class-conditionalequires zero training during inference time and can easily
hypernetwork's behavior, making some key changes to thescale to an arbitrary number of classes.

structure and adding normalization to the predicted param-Fe.-shot Object Detection and BeyondMost neural net-

eters, resulting in much higher accuracy. _ works are trained with stochastic gradient descent, which
of classes from few shots, we name our framew8ykph and identically distributedi{.d.). However, this.i.d. as-

after the nimble long-tailed hummingbird (Figure 1). We symption is violated in the practical scenario where few-
present extensive evaluations that empirically demonstrategp ot categories are seen only after the model have been
the bene ts of our design, showing that Sylph is more effec- rained for a set of base categories. In such situations,
tive than ONCE [44] (our main baseline) across all the re- catastrophic forgetting [12,19] can occur: the model suffers
ported datasets and evaluation regimes. On the challengingevere degradation in performance on the original classes.
LVIS few-s_hot Iear_nlng benchm_ark in pa_lrtlcular, we show |n image classi cation, some works have proposed a gen-
that Sylph is superior by a margin 8% points. eralized setting for few-shot learning to tackle this ex-
2. Related Work act situation [16, 46]. Similarly for object detection, re-
cent works have focused on incorporating few-shot cate-

Object Detection Object detection is the task of simulta- 45 jes into a model that has been pretrained with large-scale
neously localizing and classifying objects within a scene. datasets [11,44,65]. This goes beyond the simpler more tra-
Most modern object detectors consist of a convolutional jisional few-shot object detection set-up []. More

feature extractor [24, 31, 57] followed by various mech- gonerayy continual object detection [1, 44] works attempt
anisms or networks to predict classes and some form ofy, jam to detect new classes through several learning in-
boundlng_ box coordinates .[].' Detectors that rst gen- stances without forgetting any of the seen categories.

erate region proposals during inference are often_referred Of the prior work with the goal of both few-shot and con-
to as two-stage fjetectors [6, 17, e 1, while ones) learning for object detection, some are continual only
that directly predict class and localization from the con- in that they do not degrade base class accuracy dussig a
volutional feature maps are considered single-stage detec'glefew—shot adaptation to new classes [11,65]. In contrast,
tors [8, 35, 38,53, 62]. Single-stage detectors have the ad-p\cg [44] considers a setting in which novel classes arrive
vantage of having simpler implementations and faster in- ¢oq, entially anéncrementally leading to multiple learning
ference speeds, and re_c_ent a(_jvances have increased theientg during which forgetting must be avoided. We adopt a
accuracy to be competitive with two-stage models [37], mqqel architecture that is able to provide such capabilities,
which had previously been the primary advantage of such ;4 i is more exible and a better t for interactively learning

models. Throughout this work, we choose to primarily o\ cjasses from the world. Methodologically, however, we

use FCOS [62] as our base detector due to its strong Pelapproach the problem differently, as we (1) simplify learn-

form?nce a_md clasg-agnostlc I(?callzatlon based on “center-mg by utilizing a detector with class-agnostic localization
ness” and mterseguop-over-umpn (loV) losses; this allows aiher than trying to learn per-class localization from only
for better general|;at|on and hlgh recall on novel unseen favy samples; (2) leverage a per-class binary classi er to
classes [29], especially when trained on large-scale datasetsy| o,y incrementally and independently added novel classes
Few-shot Learning While many supervised learning ap- to co-exist with previously learned base classes, detecting
proaches assume a large number of samples from the datgeen and novel classes in a single pass; (3) generate both
distribution, such methods risk over tting when the model weights and biases for newly added classes, proposing an
has only a few samples to learn from. Given the costs of col- effective weight normalization to the output of a hypernet-
lecting, annotating, and training models with large amounts work weight generator that enables stable training and more

Figure 1. The Sylph Framework. Sylph is composed of a base object detector and a few-shot hypernetwork, whose Code Generator
consists of a Code Predictor Head and Code Process Module (detailed in Section. 3.1.2). The dashed arrow indicates weight sharing.

effective synthesis of class-speci c class codes. ture maps = F (1), which can then be used by the detec-
tor head to predict both classand location, as speci ed by
3. Methods a bounding boxb = (x;y;h;w). Many detection models
We seek a model that can operate in the incrementalperform both these tasks in parallel [18, 38, 54], predicting

few-shot detection (iFSD) [44] setting: a detector that can the class category and bounding box coordinates from the
exibly adapt to new classes introduced in sequence from same featureso = D (h), whereo = [01;:::;; 0] are pre-
only a few examples, without forgetting any previously seen dicted objects ifl , with each object; = [¢;; b] contain-

classes. We differentiate theontinuousiFSD with batch ing the predicted class label and bounding box. We denote
iIFSD where novel classes are added in a batch. Concretelythe nal regression and classi cation layer & andC ,
after being pretrained on a base set of clas¥®sthe ob- which can be a fully connected layer in region-based detec-

jective is to achieve good performance on a novel classtion [54] or a convolutional layer in dense prediction [62].
¢ 2 C" from a support set of onli shots while main- ~ For anN -way classi cation problem, the parametergor
taining strong performance dd° and the preceding novel the classi er normally producdl + 1 logits for a softmax,
classey, 8 t0 < t, withoutre-training on data from these corresponding to thdl classes and the background. Mean-
previous classes. As the goal is to learn to adapt to newwhile, the bounding box regressor's parametersontains

classes, we assun@\ C" = ;. N stacked weights, with one for each clasg the class
with the highest prediction score determines which regres-
3.1. Sylph sor's prediction is selected. In order for our object detector

To achieve the stated objective of iFSD, we introduce 0 Support the challenging iFSD setting, we make several
Sylph, a framework that can quickly add detection capabil- K€y design choices affecting the two primary outputs of a
ities of new classes, without any additional optimization of detector: classi cation and localization.
model parameters. Sylph is composed of two primary com- Incremental Classi cation Without Forgetting A ma-
ponents (Figure 1): (1) a base object detector with class-jor contributor to catastrophic forgetting is highly nond.
agnostic localization to surface salient objects in an imagesequential training with a shared classi cation head [12];
with high recall and (2) a few-shot hypernetwork to gener- optimizing the softmax can result in destructive gradients
ate class-speci c parameters for a per-class binary classi er. overwriting previous knowledge. We thus replace the sin-

We discuss each of these in detail below. gle softmax-based classi €€ with many binary sigmoid-
based classi er<C , with each class individually handled
3.1.1 Object Detector by its own set of parameters. When trained with the focal

loss [35], sigmoid classi ers have been shown to be just as
Modern object detection models [25] are often composed of effective as a single softmax classi er. Thus, when adding
a convolutional backbonE followed by a detector head novel classes, we can train or generate a new set of classi er
D . Given animagé, the former produces high-level fea- parameters?. When combined with previous parameters

to predict all available classes, there is zero interference be-

tween each class's prediction score.

Class-agnostic Bounding Box RegressoiPrevious few-
shot object detection methods [28,
learn a per-class box regres®r, in tandem with the clas-

si er. However, when only a few examples are available
for learning, the model has very little opportunity to learn

] have tended to

a custom location regressor for each novel class. Instead,
we propose pretraining the base object detector with a sin-

gle class-agnostic box regresddr for all classes. When
adapting the model to novel clas$g', we simply reus®

for localization. Such an approach has been shown to work

well for zero-shot object detection if pretrained on a large-

scale dataset [21] and can leverage progress in the open

world detection literature [29]. By alleviating the need to
learn localization in a few-shot or continual manner, we can
treat the problem as a few-shot classi cation task and focus
just on generating additional classi er parametefs We
validate the effectiveness of this setup in Section 5.

We can satisfy both the aforementioned objectives with
FCOS [62], a simple one-stage and anchor-free object de
tector. With these design choices, we decouple the few-sho
novel class detection problem into serial tasks of localiza-
tion and few-shot classi cation, dramatically simplifying it.

3.1.2 Few-shot Hypernetwork

With localization handled by the class-agnostic object de-
tector, the problem reduces to few-shot classi cation. Sylph
uses a hypernetworkl to generate parameters
fwe; bxg for each binary classieC .. H takes as input
anN -way K -shot episode of support set samples, consist-
ing of K instances oN classes randomly sampled from
the meta-training set. We denote this support3$et K =

(IN KN Ky with N K 2 RN K) C H W The hy-
pernetwork is modularized into three components: support

t

Figure 2. Hypernetwork architecture of the code predictor head.

ceding channel dimension ardis the convolutional ker-
nel size. The code predictor head (Figure 2) consists of a
shared subnetwork consisting®f 3 convolutional layers
interleaved with group normalization [67] and ReLU activa-
tion functions, followed by a layer for predicting a weight
and bias. Global average pooling after the weight and bias
predictor layers is used to reduce the predicted weights to
the nal dimensions. While the hypernetwork is capable of
predicting weightsv.; of arbitrary size, we choose a kernel

size ofk = 1 so that the generated weights can be used as
either convolutional or linear layer weights, allowing com-
patibility with both region-based and dense detection.

Code Process Module (CPM) In the CPM, we aggre-
gate the predicted parameters for all samples of a class from
CPH into a single set of weightg. and biady,. We found a
simple average of tlge weights and the bias ross shots to be
effective: we = & 1 '(Wei) andb = & 1N (k)-
However, directly using the class coudg in this form can
cause gradient exploding, especially when stacking multi-
ple convolutional layers between the input features and the
nal predictor head [16]. As shown in Fig. 4, gradient clip-
ping [43] can help, but occasionally the model still does not
converge well, leading to high variance in model accuracy.

set feature extraction, code prediction, and code aggregation Our weightsw,, as generated from the input support set

and normalization, which we detail below.
Support Set Feature Extraction The rst stage consists of

features at this stage, more closely resemble feature maps
than classi er weights. To this end, we want to avoid di-

extracting features from the episode’s support set. We shard€Ctly passingw to the conditional classi er. Inspired by

the same convolutional backboRe from the base detec-

tor to obtain features for each of the support set images, a$terizing classi ers for zero-shot object detection [2,

the success df2-normalized feature embeddings in param-

1,

: o5, o ,
it can be pretrained with the base detector in normal batchV® explore incorporating “-normalization of the weights

training. ROIAlignV2 [23] is then used to pull the features

7w~ We normalize along the channel axis (in contrast

corresponding to the location of each instance of each classto batch normalization [26]) to ensure weights for differ-

We choose to crop at the feature level rather than at the im-

age level, as features have a larger receptive eld, poten-
tially allowing for increased global context. ROIAlignV2
produces a xed size feature; 2 R% 9 9w for each
object instance, witld; being the channel dimension of the
nal layer of the backbone, and typically, = d,, = 7.

Code Predictor Head (CPH) Given each support sample's
extracted features;;, hypernetworkH predicts weights
Wei 2 RY © X Kand biasy; 2 R, whereC is the pre-

ent classes do not interact. With normalization, learning is
simpli ed and training is stabilized by mapping the support
set features onto a unit sphere.
To ensure compatibility of the normalized weiglﬂ%

with a non-cosine classi er, we follow [56] and add a learn-
able scalar parametgyrescaling the normalized weights as
We = poo We- This allows us to avoid needing to adapt the
classi er in the base detector. By replacing per-class norm
with a universalg, we end up with less variance across all

class weights. We found that predicting the bias counteractsPASCAL VOC [9] are used as base classes, while the re-
this negative effect. For the bias, we further add a prior bias maining 20 classes are designated novel. We report ex-
b= log((1)=); = 0:01following [35] and with perimental results foK = f1;5;10; 20; 30g shots on the
a scalagy, resulting in a nal biasob, = g, b+ by,. COCO minival set. FoLVIS-vl, we follow the organi-
cally long-tail distribution of the dataset as proposed in [65]
to produce a base-novel split. LVIS contains 405 frequent
X i o M classes appearing in more than 100 images, 461 common
framework requires two sequential training stages: pretrain-¢|asses with 10-100 images, and 337 rare classes with fewer
ing the base detector and learning the hypernetwork. than 10 images, for a total of 1203 object categories. In our
Base Object Detector Pretraining We rst pretrain the experiments, we use the 337 rare classes as novel classes
base detectdDd with batch stochastic gradient descent on and the 866 frequent and common classes as base classes.
base classe8P, optimizing for classi cation and bounding For evaluation metrics, we report mean average preci-
box regression losses. We choose FCOS as our base detegion (mAP) computed on a per-split basis; we run inference
tor; we refer the reader to [62] for further training details. for both the base and novel classes in a single pass, but we
The pretraining process produces trained parametarsl report mAP separately as different models tend to have dif-

, as well as class agnostic box regression parametansl ferent performances across splits. For COCO, we denote
class codes for the base classgs fw,; b, g 8¢, 2 CP. the mAPs for base and novel categoriesA®s, andAP,,,
Thus, at the conclusion of this stage, we have a deté€ktor respectively. Similarly, for LVISAP,, AP, andAP; is
capable of producing bounding boxes in an image for the the average precision aggregated across rare, common, and

3.2. Training and Evaluation Details
To train the base detector and the hypernetwork, Sylph

base classes and potentially novel classes as well. frequent classes, respectively. For all experiments, we re-
Meta-training During meta-training, we create few-shot port the mean and standard deviation of the mAP across
episodes oN categories by sampling a setdf (K +1) ve meta-testing runs. We run experiments with several pre-

image and bounding box tuplgs; b) from CP, a support training strategies: (1pefault the model is pretrained on
setofN K samples, and a query setwhkh 1samples. ImageNet-1k [55]; (2Aug large-scale jittering (LSJ) [15]
The query set is used as input to the base detector. Only th&nd RandAugment [5] are also applied; andA8) in ad-
focal loss [35] from the classi cation branch is computed dition to the aforementioned augmentations, 1G-50M pre-
at this stage. The primary goal at this stage is to train thetrained backbone weights from PreDet [49] are used.
few-shot hypernetworkl so that it is able to magN * Implementation Details For all our experiments, we use
to a new set of synthesized class codgs = (w,;b,) a ResNet-50 backbone [24] with a feature pyramid network
for classi cation. We freeze the whole base object detector (FPN) [34]. We use SGD with momentur®:@) and weight
except the four convolutional layers in the FCOS classi - decay (e 4) for all training stages. During pretraining, we
cation subnetwork and replace its initial classi er with our set the learning rate the 2 with a batch size of 16; we
conditional classi er capable of taking the synthesized class increase the batch size to 128 when data augmentation is
codes to make predictions on the query image features. Wepn. During meta-training, we set the learning rate (o
found that netuning these extra convolutional layers in the 5e 4. We uniformly sample 3-way 5-shot tasks from the
base detector results in better overall performance than nobase classes, with a single query image per class.

netuning them (Section 5). In preliminary experiments we We pretrain for 90k steps (L1hrs), with an extra 30k
found that the more components/layers we initialize from steps for meta-learning (L3hrs). Thdr is decreased ten-
pretraining the better our nal AP for base classes. fold at steps 60k and 80k in the pretraining, and at 20k and
Meta-testing To evaluate the model's performance across 26k during the meta-training. Finally, we limit the number
all classes, we tak& shots per-class samples from the of detections perimage to 100 for COCO and 300 for LVIS.
whole set and make feed-forward passes through the hy-We build our framework on top of Detectron2 [68]; we plan
pernetwork one class at a time to synthesize class codeso publicly release our code upon publication.

c = fw,;b,g8c2 CP[C". With the generated codes,
the base detector is able to perform inference at the same in
ference speed and behavior as a normal detector. This setu%
of our model is denoted &&ylph

4.1. Incremental Few-shot Object Detection

As the only other method designed for iFSD, we pri-

arily compare against ONCE on both COCO and LVIS.

Focusing on thenetuning-free iFSD evaluation proto-

4. Experiments col [44], we d_e_monstrate _the effecti_/gness of Sylph with
i several pretraining strategies. In addition, we report results

Datasets and Metrics We benchmark and ablate Sylph on ¢ 5 few training-intensive FSD methods as an upper bound

two datasets: COCO [36] and LVIS [22]. FROCO, we 4t oyr netune-free approach, including joint-training,

follow the split commonly used for few-shot object detec- |\ hich is normally used for long-tailed datasets [22], and
tion [28, 44, 65]: the 60 categories that are disjoint from

Table 1. Benchmarking on the eval split of LVIS-vl. We Wse= 10 shots to infer base class codes and all available data for the rare

classes (10). BothONCE andSylphpredict all classes in a single pass. The base and novel data checkmarks indicate whether the data

is used to update model weights during an incremental learning step.

Pretrain \ Method Base Data Novel Data Continuous Re-training AP AP AP . AP ¢
ONCE [44] X 12.9(0.65) 6.3(0.38) 11.2(0.60) 17.7(0.97)
Default Sylph X 18.5(0.12)('5.6) 10.0(0.17) 16.5(0.25) 24.3(0.12)
TFA-ours X X 21.0 11.9 17.7 28.6
TFA [65] X (K shots) X X 21.1 9.1 21.6 25.9
Joint-train [22] X X X 20.7 8.7 18.2 28.8
ONCE [44] X 8.5(0.24) 6.1(0.31) 7.8(042) 10.2(0.14)
Aug Sylph X 20.7(0:10)("12.2) 13.9(0:21) 19.0(0:19) 25.5(0:02
TFA-ours-aug X X 251 17.8 22.6 30.9
TFA -aug [65] X (K shots) X X 24.4 16.1 24.9 27.6
Joint-train [22] X X X 24.3 13.3 22.7 30.9
ONCE [44] X 19.4 (0:08) 12.3(0:33) 18.8(0:28) 23.3(0:12)
Al Sylph X 24.6(0:10)(' 5.2) 16.5(0:34) 23.7(0:17) 29.1(0:02
TFA-ours-aug X X 275 19.3 25.6 33.0
TFA -aug [65] X (K shots) X X 27.0 19.7 27.6 29.6
Joint-train [22] X X X 27.2 18.0 26.4 33.6

Table 2. Benchmarking on COCO Dataset, evaluated on minival across all data splits. On the large-scale dataset LSyh
set. We benchmark Sylph against ONCE Kfor= 1; 5; 10 shots,

with additionalK = 20; 30 shots for Sylph. We also include 10-
shot TFA, which netunes on novel data. To mimic the training

protocol of ONCE, we apply early-stop (at 30k steps) to Sylph

pretraining (denoted Sylph-es).

Shot | Method AP, AP,
ONCE [44] 0.7 17.9
1 | Sylph 0.9(0.11) 29.8(1.17)
Sylph (All) 1.1(0.14) 37.6(1.57)
ONCE [44] 1.0 17.9
5 Sylph 14(0.12) 355(0.18)
Sylph (All) 1.5(0.05) 42.4(0.13)
ONCE [44] 1.2 17.9
Sylph 1.6 (0.06) 35.8(0.05)
Sylph-es 2.3 22.4
10 | Sylph (All) 1.7(0.05) 42.8(0.07)
Sylph-LVIS 3.8(0.20) 37.7
Joint-train [22] 4.0 37.7
TFA-ours 3.6 N/A
TFA [65] 5.7 35.9
20 | Sylph 1.62(0.06) 36.0(0.08)
30 | Sylph 1.65(0.06) 36.1(0.08)

a netuning-based method known as TFA [65].
Finetuning-free iFSD benchmarking We primarily com-

pare with ONCE [

surpasses ONCE by 8% averaged across different pretrain-
ing strategies in a fair head-to-head (no additional data aug-
mentation or pretraining data). For the heavy data aug-
mentation setuphug ONCE struggles to converge during
training, resulting in much worse performance than Sylph.
In particular, we show that our method is truly able to learn
novel categories from few shots without forgetting base
classes. For example, with early stopping during pretrain-
ing (Sylph-es in Table 2) and = 10 shots on COCO, we
achieve al\P, twice as good as ONCE, while still surpass-
ing it by 4 points for the base classes.

Joint-training and netune-based iIFSD as upper
bounds For the Joint-train method, we follow [22] to
ensure its effectiveness on the novel split in the low-data
regime. In particular, we perform repeat factor sampling
with the factor set to 0.001 in order to balance the sam-
pling frequency across different classes during training. We
select TFA [65] to represent netuning-based iFSD meth-
ods. For this, we adapt the TFA [65] methodology to our
FCOS-based framework, following the netuning proto-
col as closely as possible. Speci cally, this involves two
training steps: (1) pretraining of the base detector on base
classes; (2) samplinggd = 10 shots across both base

], as the most relevant method in this and novel classes while freezing all layers other than the

setting. On COCO, we compare with the reported numberbox regressor and the classi er. We netune the regressor

from [

] in Table 2. For LVIS, we re-implement ONCE and train a new classier for all classes, with base clas-

with a baseline version of our code generator which has noSi er parameters initialized from pretraining. We denote
bias prediction, no weight norm, no scaling facgoin the
CPM, and no convolutional layers in the shared portion of several modi cation to the standard TFA to bring it closer
the CPH, which effectively leaves the basic components of to our setup, adjusting to an incremental batch setup [44]
the hypernetwork as close to the originally-proposed ONCE Where the novel classes are added in a single round. In par-

as possible. We denote this version ONGiETable 1.

the adapted TFA method d$-A . Additionally, we make

ticular, in the netuning stage, (1) onlg" is used, (2) the

We demonstrate that the key design choices of Sylph al-box regressor is kept frozen, and (3) the classi er is not ini-
low it to signi cantly outperform ONCE on both datasets,

tialized with any pretrained base class parameters, as we do
not netune on the base classes. In this setup, a deployed

	. Introduction
	. Related Work
	. Methods
	. Sylph
	Object Detector
	Few-shot Hypernetwork

	. Training and Evaluation Details

	. Experiments
	. Incremental Few-shot Object Detection

	. Ablations and Further Discussion
	. Conclusion

