
Sylph: A Hypernetwork Framework
for Incremental Few-shot Object Detection

Li Yin Juan M Perez-Rua Kevin J Liang
Meta AI

{liyin, jmpr, kevinjliang} @fb.com

Abstract

We study the challenging incremental few-shot object de-
tection (iFSD) setting. Recently, hypernetwork-based ap-
proaches have been studied in the context of continuous
and finetune-free iFSD with limited success. We take a
closer look at important design choices of such methods,
leading to several key improvements and resulting in a
more accurate and flexible framework, which we call Sylph.
In particular, we demonstrate the effectiveness of decou-
pling object classification from localization by leveraging
a base detector that is pretrained for class-agnostic local-
ization on large-scale dataset. Contrary to what previous
results have suggested, we show that with a carefully de-
signed class-conditional hypernetwork, finetune-free iFSD
can be highly effective, especially when a large number of
base categories with abundant data are available for meta-
training, almost approaching alternatives that undergo test-
time-training. This result is even more significant consider-
ing its many practical advantages: (1) incrementally learn-
ing new classes in sequence without additional training, (2)
detecting both novel and seen classes in a single pass, and
(3) no forgetting of previously seen classes. We benchmark
our model on both COCO and LVIS, reporting as high as
17% AP on the long-tail rare classes on LVIS, indicating
the promise of hypernetwork-based iFSD.

1. Introduction
While advances in deep learning have led to significant

progress in computer vision [18, 23, 24, 31], much of this
success has relied upon large-scale data collection and an-
notation [7,20,22,36], a process that is both labor-intensive
and time-consuming, and does not scale well with the num-
ber of categories. This is especially true for object detec-
tion [18, 23, 37], particularly for the long tail of object cat-
egories, where data may be scarcer [22]. As a result, few-
shot learning of object detectors (FSD) [28, 65, 70, 72] has
become a recent topic of interest.

While learning a novel class from only a few samples

alone is a challenging problem, the task can be made sim-
pler by leveraging known classes with abundant data (com-
monly referred to as base classes), whose structure can
be used as a prior for knowledge transfer. The few pre-
vious FSD works have approached this primarily in two
ways. The first is fine-tuning [47, 65], where a model is
first pretrained on the base classes and then fine-tuned on
a small balanced set of data from both the base and novel
classes, a form of test-time training [59]. Although sim-
ple, it has difficulty scaling to many real-world applications
due to its computational and memory requirements. An
alternate strategy is taking a meta-learning approach [72].
Meta-learning approaches frame the problem as “learning
to learn” [4,10,32,44,61,69,72], training the model episod-
ically to induce fast adaptation to novel classes.

However, many FSD methods focus on the limited set-up
where only novel categories are to be detected. These meth-
ods often fail to preserve the original detector performance
on base categories [4, 10, 32, 72] or forget about the ones
it was initially trained on [65]. Given the ever-changing
nature of the real-world, a desirable property of machine
learning systems is the ability to incrementally learn new
concepts without revisiting previous ones and not forgetting
them [40, 42]. Humans are able to achieve such feat, learn-
ing novel concepts not only without forgetting but reusing
such knowledge [45]. Conventional supervised learning
struggles with incrementally presented data, tending to suf-
fer catastrophic forgetting [39, 51]. An alternative is study-
ing all the available data every time new concepts arrive,
commonly referred to as “joint training” [22], but such a
paradigm imposes a slow development cycle, requiring sig-
nificant data collection efforts for the new concepts and ex-
pensive large-scale training (and re-training).

Instead, we seek an object detection model capable of
learning new classes from a few shots in a fast, scalable
manner without forgetting previously seen classes, a set-
ting commonly referred to as incremental few-shot detec-
tion (iFSD). ONCE [44], a meta-learning approach to FSD,
is of particular interest due to its hypernetwork-based class-
conditional design. ONCE is able to enroll novel categories

without affecting its ability to remember base classes. We
use a base detector and hypernetwork architecture similar to
ONCE, but with a few key design differences: (1) ONCE,
along several other recent works [28,65,72], attempts to di-
rectly produce (via training or hypernet) the parameters of
a localization regression model that transforms the query
sample feature maps into the output bounding boxes, all
from the few available training samples. We �nd this to be
unnecessary and potentially harmful, as the task can be sig-
ni�cantly simpli�ed by decoupling localization from clas-
si�cation. To achieve this goal, we leverage a base detec-
tor with class-agnostic localization capability pretrained on
abundant base class data. (2) We study the class-conditional
hypernetwork's behavior, making some key changes to the
structure and adding normalization to the predicted param-
eters, resulting in much higher accuracy.

With an architecture that can swiftly adapt to the long tail
of classes from few shots, we name our frameworkSylph,
after the nimble long-tailed hummingbird (Figure 1). We
present extensive evaluations that empirically demonstrate
the bene�ts of our design, showing that Sylph is more effec-
tive than ONCE [44] (our main baseline) across all the re-
ported datasets and evaluation regimes. On the challenging
LVIS few-shot learning benchmark in particular, we show
that Sylph is superior by a margin of8%points.

2. Related Work
Object Detection Object detection is the task of simulta-
neously localizing and classifying objects within a scene.
Most modern object detectors consist of a convolutional
feature extractor [24, 31, 57] followed by various mech-
anisms or networks to predict classes and some form of
bounding box coordinates [25]. Detectors that �rst gen-
erate region proposals during inference are often referred
to as two-stage detectors [6, 17, 18, 23, 54], while ones
that directly predict class and localization from the con-
volutional feature maps are considered single-stage detec-
tors [8, 35, 38, 53, 62]. Single-stage detectors have the ad-
vantage of having simpler implementations and faster in-
ference speeds, and recent advances have increased their
accuracy to be competitive with two-stage models [37],
which had previously been the primary advantage of such
models. Throughout this work, we choose to primarily
use FCOS [62] as our base detector due to its strong per-
formance and class-agnostic localization based on “center-
ness” and intersection-over-union (IoU) losses; this allows
for better generalization and high recall on novel unseen
classes [29], especially when trained on large-scale datasets.

Few-shot Learning While many supervised learning ap-
proaches assume a large number of samples from the data
distribution, such methods risk over�tting when the model
has only a few samples to learn from. Given the costs of col-
lecting, annotating, and training models with large amounts

of data, few-shot learning has become an active research
direction, with image classi�cation as the most common
task. Many recent approaches take a meta-learning strat-
egy [63]. Optimization-based approaches produce models
that can quickly learn from few samples [13,41,52]. Metric-
learning methods learn an embedding function that induces
a space where samples can be compared with nearest neigh-
bors or other such simple algorithms [33,58,60,64]. Hyper-
networks have also been used to predict model parameters
for new classes from limited samples [3, 14, 16, 48, 50, 66].
We use a hypernetwork in our model to predict convolu-
tional kernels for novel object classi�cation. Such a strategy
requires zero training during inference time and can easily
scale to an arbitrary number of classes.

Few-shot Object Detection and BeyondMost neural net-
works are trained with stochastic gradient descent, which
often assumes the training data are drawn independently
and identically distributed (i.i.d.). However, thisi.i.d. as-
sumption is violated in the practical scenario where few-
shot categories are seen only after the model have been
trained for a set of base categories. In such situations,
catastrophic forgetting [12,19] can occur: the model suffers
severe degradation in performance on the original classes.
In image classi�cation, some works have proposed a gen-
eralized setting for few-shot learning to tackle this ex-
act situation [16, 46]. Similarly for object detection, re-
cent works have focused on incorporating few-shot cate-
gories into a model that has been pretrained with large-scale
datasets [11,44,65]. This goes beyond the simpler more tra-
ditional few-shot object detection set-up [28, 47, 48]. More
generally, continual object detection [1, 44] works attempt
to learn to detect new classes through several learning in-
stances without forgetting any of the seen categories.

Of the prior work with the goal of both few-shot and con-
tinual learning for object detection, some are continual only
in that they do not degrade base class accuracy during asin-
gle few-shot adaptation to new classes [11,65]. In contrast,
ONCE [44] considers a setting in which novel classes arrive
sequentially andincrementally, leading to multiple learning
events during which forgetting must be avoided. We adopt a
model architecture that is able to provide such capabilities,
as it is more �exible and a better �t for interactively learning
new classes from the world. Methodologically, however, we
approach the problem differently, as we (1) simplify learn-
ing by utilizing a detector with class-agnostic localization
rather than trying to learn per-class localization from only
a few samples; (2) leverage a per-class binary classi�er to
allow incrementally and independently added novel classes
to co-exist with previously learned base classes, detecting
seen and novel classes in a single pass; (3) generate both
weights and biases for newly added classes, proposing an
effective weight normalization to the output of a hypernet-
work weight generator that enables stable training and more

Figure 1. The Sylph Framework. Sylph is composed of a base object detector and a few-shot hypernetwork, whose Code Generator
consists of a Code Predictor Head and Code Process Module (detailed in Section. 3.1.2). The dashed arrow indicates weight sharing.

effective synthesis of class-speci�c class codes.

3. Methods
We seek a model that can operate in the incremental

few-shot detection (iFSD) [44] setting: a detector that can
�exibly adapt to new classes introduced in sequence from
only a few examples, without forgetting any previously seen
classes. We differentiate thiscontinuousiFSD with batch
iFSD where novel classes are added in a batch. Concretely,
after being pretrained on a base set of classesCb, the ob-
jective is to achieve good performance on a novel class
cn

t 2 Cn from a support set of onlyK shots while main-
taining strong performance onCb and the preceding novel
classescn

t 0 8 t0 < t , without re-training on data from these
previous classes. As the goal is to learn to adapt to new
classes, we assumeCb \ Cn = ; .

3.1. Sylph

To achieve the stated objective of iFSD, we introduce
Sylph, a framework that can quickly add detection capabil-
ities of new classes, without any additional optimization of
model parameters. Sylph is composed of two primary com-
ponents (Figure 1): (1) a base object detector with class-
agnostic localization to surface salient objects in an image
with high recall and (2) a few-shot hypernetwork to gener-
ate class-speci�c parameters for a per-class binary classi�er.
We discuss each of these in detail below.

3.1.1 Object Detector

Modern object detection models [25] are often composed of
a convolutional backboneF � followed by a detector head
D� . Given an imageI , the former produces high-level fea-

ture mapsh = F � (I), which can then be used by the detec-
tor head to predict both classc and location, as speci�ed by
a bounding boxb = (x; y; h; w). Many detection models
perform both these tasks in parallel [18, 38, 54], predicting
the class category and bounding box coordinates from the
same features:o = D� (h), whereo = [o1; :::; on] are pre-
dicted objects inI , with each objectoi = [ci ; bi] contain-
ing the predicted class label and bounding box. We denote
the �nal regression and classi�cation layer asB� andC
 ,
which can be a fully connected layer in region-based detec-
tion [54] or a convolutional layer in dense prediction [62].
For anN -way classi�cation problem, the parameters
 for
the classi�er normally produceN + 1 logits for a softmax,
corresponding to theN classes and the background. Mean-
while, the bounding box regressor's parameters� contains
N stacked weights� c, with one for each classc; the class
with the highest prediction score determines which regres-
sor's prediction is selected. In order for our object detector
to support the challenging iFSD setting, we make several
key design choices affecting the two primary outputs of a
detector: classi�cation and localization.

Incremental Classi�cation Without Forgetting A ma-
jor contributor to catastrophic forgetting is highly non-i.i.d.
sequential training with a shared classi�cation head [12];
optimizing the softmax can result in destructive gradients
overwriting previous knowledge. We thus replace the sin-
gle softmax-based classi�erC
 with many binary sigmoid-
based classi�ersC
 c , with each class individually handled
by its own set of parameters. When trained with the focal
loss [35], sigmoid classi�ers have been shown to be just as
effective as a single softmax classi�er. Thus, when adding
novel classes, we can train or generate a new set of classi�er
parameters
 n

c . When combined with previous parameters

to predict all available classes, there is zero interference be-
tween each class's prediction score.

Class-agnostic Bounding Box RegressorPrevious few-
shot object detection methods [28, 44, 65] have tended to
learn a per-class box regressorB� c in tandem with the clas-
si�er. However, when only a few examples are available
for learning, the model has very little opportunity to learn
a custom location regressor for each novel class. Instead,
we propose pretraining the base object detector with a sin-
gle class-agnostic box regressorB� for all classes. When
adapting the model to novel classesCn , we simply reuseB�

for localization. Such an approach has been shown to work
well for zero-shot object detection if pretrained on a large-
scale dataset [21] and can leverage progress in the open-
world detection literature [29]. By alleviating the need to
learn localization in a few-shot or continual manner, we can
treat the problem as a few-shot classi�cation task and focus
just on generating additional classi�er parameters
 n

c . We
validate the effectiveness of this setup in Section 5.

We can satisfy both the aforementioned objectives with
FCOS [62], a simple one-stage and anchor-free object de-
tector. With these design choices, we decouple the few-shot
novel class detection problem into serial tasks of localiza-
tion and few-shot classi�cation, dramatically simplifying it.

3.1.2 Few-shot Hypernetwork
With localization handled by the class-agnostic object de-
tector, the problem reduces to few-shot classi�cation. Sylph
uses a hypernetworkH to generate parameters
 �

c =
f wc; bcg for each binary classi�erC
 �

c
. H takes as input

anN -way K -shot episode of support set samples, consist-
ing of K instances ofN classes randomly sampled from
the meta-training set. We denote this support setSN � K =
(I N � K ; bN � K), with I N � K 2 R(N � K) � C � H � W . The hy-
pernetwork is modularized into three components: support
set feature extraction, code prediction, and code aggregation
and normalization, which we detail below.

Support Set Feature Extraction The �rst stage consists of
extracting features from the episode's support set. We share
the same convolutional backboneF � from the base detec-
tor to obtain features for each of the support set images, as
it can be pretrained with the base detector in normal batch
training. ROIAlignV2 [23] is then used to pull the features
corresponding to the location of each instance of each class.
We choose to crop at the feature level rather than at the im-
age level, as features have a larger receptive �eld, poten-
tially allowing for increased global context. ROIAlignV2
produces a �xed size featurezc;i 2 Rdf � dh � dw for each
object instance, withdf being the channel dimension of the
�nal layer of the backbone, and typicallydh = dw = 7 .

Code Predictor Head (CPH) Given each support sample's
extracted featureszc;i , hypernetworkH predicts weights
wc;i 2 R1� C � k � k and biasbc;i 2 R, whereC is the pre-

Figure 2. Hypernetwork architecture of the code predictor head.

ceding channel dimension andk is the convolutional ker-
nel size. The code predictor head (Figure 2) consists of a
shared subnetwork consisting of3 � 3 convolutional layers
interleaved with group normalization [67] and ReLU activa-
tion functions, followed by a layer for predicting a weight
and bias. Global average pooling after the weight and bias
predictor layers is used to reduce the predicted weights to
the �nal dimensions. While the hypernetwork is capable of
predicting weightswc;i of arbitrary size, we choose a kernel
size ofk = 1 so that the generated weights can be used as
either convolutional or linear layer weights, allowing com-
patibility with both region-based and dense detection.

Code Process Module (CPM) In the CPM, we aggre-
gate the predicted parameters for all samples of a class from
CPH into a single set of weightswc and biasbc. We found a
simple average of the weights and the bias across shots to be
effective: wc = 1

K

P k � 1
i =0 (wc;i) andbc = 1

K

P k � 1
i =0 (bc;i).

However, directly using the class codewc in this form can
cause gradient exploding, especially when stacking multi-
ple convolutional layers between the input features and the
�nal predictor head [16]. As shown in Fig. 4, gradient clip-
ping [43] can help, but occasionally the model still does not
converge well, leading to high variance in model accuracy.

Our weightswc, as generated from the input support set
features at this stage, more closely resemble feature maps
than classi�er weights. To this end, we want to avoid di-
rectly passingwc to the conditional classi�er. Inspired by
the success ofL 2-normalized feature embeddings in param-
eterizing classi�ers for zero-shot object detection [2, 21],
we explore incorporatingL 2-normalization of the weights

wc
jj wc jj . We normalize along the channel axis (in contrast
to batch normalization [26]) to ensure weights for differ-
ent classes do not interact. With normalization, learning is
simpli�ed and training is stabilized by mapping the support
set features onto a unit sphere.

To ensure compatibility of the normalized weightswc
jj wc jj

with a non-cosine classi�er, we follow [56] and add a learn-
able scalar parameterg, rescaling the normalized weights as
w�

c = g
jj wc jj wc. This allows us to avoid needing to adapt the

classi�er in the base detector. By replacing per-class norm
with a universalg, we end up with less variance across all

class weights. We found that predicting the bias counteracts
this negative effect. For the bias, we further add a prior bias
bp = � log((1 � �)=�); � = 0 :01 following [35] and with
a scalargb, resulting in a �nal bias ofb�

c = gb � bc + bp.

3.2. Training and Evaluation Details
To train the base detector and the hypernetwork, Sylph

framework requires two sequential training stages: pretrain-
ing the base detector and learning the hypernetwork.

Base Object Detector Pretraining We �rst pretrain the
base detectorD � with batch stochastic gradient descent on
base classesCb, optimizing for classi�cation and bounding
box regression losses. We choose FCOS as our base detec-
tor; we refer the reader to [62] for further training details.
The pretraining process produces trained parameters� and
� , as well as class agnostic box regression parameters� and
class codes for the base classes
 b = f wcb ; bcb g 8 cb 2 Cb.
Thus, at the conclusion of this stage, we have a detectorD �

capable of producing bounding boxes in an image for the
base classes and potentially novel classes as well.

Meta-training During meta-training, we create few-shot
episodes ofN categories by sampling a set ofN � (K + 1)
image and bounding box tuples(I; b) from Cb, a support
set ofN � K samples, and a query set withN � 1 samples.
The query set is used as input to the base detector. Only the
focal loss [35] from the classi�cation branch is computed
at this stage. The primary goal at this stage is to train the
few-shot hypernetworkH so that it is able to mapSN � K

to a new set of synthesized class codes
 �
cb

= (w�
cb

; b�
cb

)
for classi�cation. We freeze the whole base object detector
except the four convolutional layers in the FCOS classi�-
cation subnetwork and replace its initial classi�er with our
conditional classi�er capable of taking the synthesized class
codes to make predictions on the query image features. We
found that �netuning these extra convolutional layers in the
base detector results in better overall performance than not
�netuning them (Section 5). In preliminary experiments we
found that the more components/layers we initialize from
pretraining the better our �nal AP for base classes.

Meta-testing To evaluate the model's performance across
all classes, we takeK shots per-class samples from the
whole set and make feed-forward passes through the hy-
pernetwork one class at a time to synthesize class codes

 �

c = f w�
c ; b�

cg 8 c 2 Cb [Cn . With the generated codes,
the base detector is able to perform inference at the same in-
ference speed and behavior as a normal detector. This setup
of our model is denoted asSylph.

4. Experiments
Datasets and Metrics We benchmark and ablate Sylph on
two datasets: COCO [36] and LVIS [22]. ForCOCO, we
follow the split commonly used for few-shot object detec-
tion [28, 44, 65]: the 60 categories that are disjoint from

PASCAL VOC [9] are used as base classes, while the re-
maining 20 classes are designated novel. We report ex-
perimental results forK = f 1; 5; 10; 20; 30g shots on the
COCO minival set. ForLVIS-v1, we follow the organi-
cally long-tail distribution of the dataset as proposed in [65]
to produce a base-novel split. LVIS contains 405 frequent
classes appearing in more than 100 images, 461 common
classes with 10-100 images, and 337 rare classes with fewer
than 10 images, for a total of 1203 object categories. In our
experiments, we use the 337 rare classes as novel classes
and the 866 frequent and common classes as base classes.

For evaluation metrics, we report mean average preci-
sion (mAP) computed on a per-split basis; we run inference
for both the base and novel classes in a single pass, but we
report mAP separately as different models tend to have dif-
ferent performances across splits. For COCO, we denote
the mAPs for base and novel categories asAPb andAPn ,
respectively. Similarly, for LVIS,APr , APc, andAPf is
the average precision aggregated across rare, common, and
frequent classes, respectively. For all experiments, we re-
port the mean and standard deviation of the mAP across
�ve meta-testing runs. We run experiments with several pre-
training strategies: (1)Default: the model is pretrained on
ImageNet-1k [55]; (2)Aug: large-scale jittering (LSJ) [15]
and RandAugment [5] are also applied; and (3)All: in ad-
dition to the aforementioned augmentations, IG-50M pre-
trained backbone weights from PreDet [49] are used.

Implementation Details For all our experiments, we use
a ResNet-50 backbone [24] with a feature pyramid network
(FPN) [34]. We use SGD with momentum (0:9) and weight
decay (1e� 4) for all training stages. During pretraining, we
set the learning rate to1e� 2 with a batch size of 16; we
increase the batch size to 128 when data augmentation is
on. During meta-training, we set the learning rate (lr) to
5e� 4. We uniformly sample 3-way 5-shot tasks from the
base classes, with a single query image per class.

We pretrain for 90k steps (� 11hrs), with an extra 30k
steps for meta-learning (� 13hrs). Thelr is decreased ten-
fold at steps 60k and 80k in the pretraining, and at 20k and
26k during the meta-training. Finally, we limit the number
of detections per image to 100 for COCO and 300 for LVIS.
We build our framework on top of Detectron2 [68]; we plan
to publicly release our code upon publication.

4.1. Incremental Few­shot Object Detection
As the only other method designed for iFSD, we pri-

marily compare against ONCE on both COCO and LVIS.
Focusing on the�netuning-free iFSD evaluation proto-
col [44], we demonstrate the effectiveness of Sylph with
several pretraining strategies. In addition, we report results
for a few training-intensive FSD methods as an upper bound
of our �netune-free approach, including joint-training,
which is normally used for long-tailed datasets [22], and

Table 1. Benchmarking on the eval split of LVIS-v1. We useK = 10 shots to infer base class codes and all available data for the rare
classes (� 10). BothONCE� andSylphpredict all classes in a single pass. The base and novel data checkmarks indicate whether the data
is used to update model weights during an incremental learning step.

Pretrain Method Base Data Novel Data Continuous Re-training AP AP r AP c AP f

Default

ONCE� [44] X 12.9 (� 0.65) 6.3 (� 0.38) 11.2 (� 0.60) 17.7 (� 0.97)
Sylph X 18.5 (� 0.12)(" 5.6) 10.0 (� 0.17) 16.5 (� 0.25) 24.3 (� 0.12)

TFA-ours X X 21.0 11.9 17.7 28.6
TFA� [65] X (K shots) X X 21.1 9.1 21.6 25.9
Joint-train [22] X X X 20.7 8.7 18.2 28.8

Aug

ONCE� [44] X 8.5 (� 0.24) 6.1 (� 0.31) 7.8 (� 0.42) 10.2 (� 0.14)
Sylph X 20.7 (� 0:10)(" 12.2) 13.9 (� 0:21) 19.0 (� 0:19) 25.5 (� 0:02)

TFA-ours-aug X X 25.1 17.8 22.6 30.9
TFA� -aug [65] X (K shots) X X 24.4 16.1 24.9 27.6
Joint-train [22] X X X 24.3 13.3 22.7 30.9

All

ONCE� [44] X 19.4 (� 0:08) 12.3 (� 0:33) 18.8 (� 0:28) 23.3 (� 0:12)
Sylph X 24.6 (� 0:10)(" 5.2) 16.5 (� 0:34) 23.7 (� 0:17) 29.1 (� 0:02)

TFA-ours-aug X X 27.5 19.3 25.6 33.0
TFA� -aug [65] X (K shots) X X 27.0 19.7 27.6 29.6
Joint-train [22] X X X 27.2 18.0 26.4 33.6

Table 2. Benchmarking on COCO Dataset, evaluated on minival
set. We benchmark Sylph against ONCE forK = 1 ; 5; 10 shots,
with additionalK = 20 ; 30 shots for Sylph. We also include 10-
shot TFA, which �netunes on novel data. To mimic the training
protocol of ONCE, we apply early-stop (at 30k steps) to Sylph
pretraining (denoted Sylph-es).

Shot Method AP n AP b

1
ONCE [44] 0.7 17.9
Sylph 0.9 (� 0.11) 29.8 (� 1.17)
Sylph (All) 1.1 (� 0.14) 37.6 (� 1.57)

5
ONCE [44] 1.0 17.9
Sylph 1.4 (� 0.12) 35.5 (� 0.18)
Sylph (All) 1.5 (� 0.05) 42.4 (� 0.13)

10

ONCE [44] 1.2 17.9
Sylph 1.6 (� 0.06) 35.8 (� 0.05)
Sylph-es 2.3 22.4
Sylph (All) 1.7 (� 0.05) 42.8 (� 0.07)
Sylph-LVIS 3.8 (� 0.20) 37.7

Joint-train [22] 4.0 37.7
TFA-ours 3.6 N/A
TFA� [65] 5.7 35.9

20 Sylph 1.62 (� 0.06) 36.0 (� 0.08)
30 Sylph 1.65 (� 0.06) 36.1 (� 0.08)

a �netuning-based method known as TFA [65].

Finetuning-free iFSD benchmarking We primarily com-
pare with ONCE [44], as the most relevant method in this
setting. On COCO, we compare with the reported number
from [44] in Table 2. For LVIS, we re-implement ONCE
with a baseline version of our code generator which has no
bias prediction, no weight norm, no scaling factorg in the
CPM, and no convolutional layers in the shared portion of
the CPH, which effectively leaves the basic components of
the hypernetwork as close to the originally-proposed ONCE
as possible. We denote this version ONCE� in Table 1.

We demonstrate that the key design choices of Sylph al-
low it to signi�cantly outperform ONCE on both datasets,

across all data splits. On the large-scale dataset LVIS,Sylph
surpasses ONCE by 8% averaged across different pretrain-
ing strategies in a fair head-to-head (no additional data aug-
mentation or pretraining data). For the heavy data aug-
mentation setup,Aug, ONCE� struggles to converge during
training, resulting in much worse performance than Sylph.
In particular, we show that our method is truly able to learn
novel categories from few shots without forgetting base
classes. For example, with early stopping during pretrain-
ing (Sylph-es in Table 2) andK = 10 shots on COCO, we
achieve anAPn twice as good as ONCE, while still surpass-
ing it by 4 points for the base classes.

Joint-training and �netune-based iFSD as upper
bounds For the Joint-train method, we follow [22] to
ensure its effectiveness on the novel split in the low-data
regime. In particular, we perform repeat factor sampling
with the factor set to 0.001 in order to balance the sam-
pling frequency across different classes during training. We
select TFA [65] to represent �netuning-based iFSD meth-
ods. For this, we adapt the TFA [65] methodology to our
FCOS-based framework, following the �netuning proto-
col as closely as possible. Speci�cally, this involves two
training steps: (1) pretraining of the base detector on base
classes; (2) samplingK = 10 shots across both base
and novel classes while freezing all layers other than the
box regressor and the classi�er. We �netune the regressor
and train a new classi�er for all classes, with base clas-
si�er parameters initialized from pretraining. We denote
the adapted TFA method asTFA� . Additionally, we make
several modi�cation to the standard TFA to bring it closer
to our setup, adjusting to an incremental batch setup [44]
where the novel classes are added in a single round. In par-
ticular, in the �netuning stage, (1) onlyCn is used, (2) the
box regressor is kept frozen, and (3) the classi�er is not ini-
tialized with any pretrained base class parameters, as we do
not �netune on the base classes. In this setup, a deployed

	. Introduction
	. Related Work
	. Methods
	. Sylph
	Object Detector
	Few-shot Hypernetwork

	. Training and Evaluation Details

	. Experiments
	. Incremental Few-shot Object Detection

	. Ablations and Further Discussion
	. Conclusion

