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Abstract

As with other deep learning methods, label quality is important for learning modern
convolutional object detectors. However, the potentially large number and wide diver-
sity of object instances that can be found in complex image scenes makes constituting
complete annotations a challenging task. Indeed, objects missing annotations can be
observed in a variety of popular object detection datasets. These missing annotations
can be problematic, as the standard cross-entropy loss employed to train object detec-
tion models treats classification as a positive-negative (PN) problem: unlabeled regions
are implicitly assumed to be background. As such, any object missing a bounding box
results in a confusing learning signal, the effects of which we observe empirically. To
remedy this, we propose treating object detection as a positive-unlabeled (PU) problem,
which removes the assumption that unlabeled regions must be negative. We demonstrate
that our proposed PU classification loss outperforms the standard PN loss on PASCAL
VOC and MS COCO across a range of label missingness, as well as on Visual Genome
and DeepLesion with full labels.

1 Introduction
The performance of supervised deep learning models is often highly dependent on the quality
of the labels they are trained on [21, 48, 53]. Recent work by [47] has implied the existence
of “support vectors” in datasets: hard to classify examples that have an especially significant
influence on a classifier’s decision boundary. As such, ensuring that these difficult exam-
ples have the correct label would appear to be important to the final classifier. However,
collecting complete labels for object detection [4, 13, 14, 34, 39, 40, 41] can be challeng-
ing, much more so than for classification tasks. Unlike the latter, with a single label per
image, the number of objects in an image is often variable, and objects can come in a large
variety of shapes, sizes, poses, and settings, even within the same class. Furthermore, ob-
ject detection scenes are often crowded, resulting in object instances that may be occluded.
Given the requirement for tight bounding boxes and the sheer number of instances to label,
constituting annotations can be very time-consuming. For example, just labeling instances,
without localization, required ∼30K worker hours for the 328K images of MS COCO [32],
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Figure 1: Because of the inherent difficulty of instance labeling, the ground truth of object
detection datasets can be incomplete. Example images and their ground truth labels shown
for (left to right) PASCAL VOC [12] (missing people, bottles), MS COCO [32] (missing
people), Visual Genome [24] (missing people, tree, clothing, etc.), and DeepLesion [52]
(ground truth is the dotted line; two boxes on the left indicate two unlabeled nodules).

and the airport checkpoint X-ray dataset used in [31, 44], which required assembling bags,
scanning, and hand labeling, took over 250 person hours for 4000 scans over the span of
several months. For medical datasets [28, 36, 49, 52], this becomes even more problem-
atic, as highly trained (and expensive) radiologist experts or invasive biopsies are needed to
determine ground truth.

As a result of its time-consuming nature, dataset annotations are often crowd-sourced
when possible, either with specialized domain experts or Amazon Mechanical Turk. In or-
der to ensure consistency, dataset designers establish labeling guidelines or have multiple
workers label the same image [12, 32]. Regardless, tough judgment calls, inter- and even
intra-worker variability, and human error can still result in overall inconsistency in label-
ing, or missing instances entirely. This becomes especially exacerbated when establishing a
larger dataset, like OpenImages [26], which while extremely large, is incompletely labeled.

Despite this, object detection algorithms often use the standard cross-entropy loss for
object classification. Implicit to this loss function is the assumption that any region without a
bounding box does not contain an object; in other words, classification is posed as a positive-
negative (PN) learning problem. While reasonable for a completely labeled dataset, despite
best efforts, this is often not the case in practice due to the previously outlined difficulties of
instance annotations. As shown in Figure 1 for a wide array of common datasets, the lack of
instance labels does not always mean the absence of true objects.

While the result of this characterization constitutes a noisy label setting, it is not noisy
in the same respect as is commonly considered for classification problems [21, 48, 53].
The presence of a positive label in object detection datasets are generally correct with high
probability; it is the lack of a label that should not be interpreted with confidence as a negative
(or background) region. Thus, given these characteristics common to object detection data,
we propose recasting object detection as a positive-unlabeled (PU) learning problem [5, 7,
11, 22, 30]. With such a perspective, existing labels still implies a positive sample, but
the lack of one no longer enforces that the region must be negative. This can mitigate the
confusing learning signal that often occurs when training on object detection datasets.

In this work, we explore how the characteristics of object detection annotation lend them-
selves to a PU learning problem and demonstrate the efficacy of adapting detection model
training objectives accordingly. We perform a series of experiments to demonstrate the effec-
tiveness of the PU objective on two popular, well-labeled object detection datasets (PASCAL
VOC [12] and MS COCO [32]) across a range of label missingness, as well as two datasets
with real incomplete labels (Visual Genome [24], DeepLesion [52]).
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(a) Positive-Negative, with
full labels

(b) Positive-Negative, with
missing labels

(c) Positive-Unlabeled

Figure 2: A classifier (green) learns to separate proposals by “objectness”. Models trained
with a standard cross-entropy loss implicitly assume positive-negative (PN) learning: regions
with bounding boxes are considered positive (blue), and any other proposed boxes are treated
as negative (red). This is reasonable when labels are complete (a), but in reality, object
detection datasets are inherently missing annotations; this forces the classifier to exclude
unlabeled objects from the positive class (b). We propose a positive-unlabeled (PU) approach
(c), which considers non-labeled regions as unlabeled (yellow) rather than negative, allowing
non-positive regions to be classified as positive. Best viewed in color.

2 Methods

2.1 Faster R-CNN
In principle, the observed problem is characteristic of the data and is thus general to any ob-
ject detection framework. However, in this work, we primarily focus on Faster R-CNN [41],
a popular 2-stage method for which we provide a quick overview here.

As with other object detection models, given an input image X , the desired output of
Faster R-CNN is a bounding box B(i) ∈ R4 and class probabilities c(i) ∈ Rk for each object
(indexed by i) present, where k is the number of classes and the final classification decision
is commonly argmaxc(i). Faster R-CNN does this in a 2-stage process. First, a convolutional
neural network (CNN) [27] is used to produce image features h. A Region Proposal Net-
work (RPN) then generates bounding box proposals B̂(i) relative to a set of reference boxes
spatially tiled over h. At the same time, the RPN predicts an “objectness” probability ĉ(i)

for each proposal, learned as an object-or-not binary classifier. The second stage then takes
the proposals with the highest scores, and predicts bounding box refinements to produce B(i)

and the final classification probabilities c(i).
Of particular interest is how the classifier producing ĉ(i) is trained. Specifically, the cross-

entropy loss H(t,y) is employed, where H(t,y) signifies the loss incurred when the model
outputs t when the ground truth is y. In the RPN, this results in the following classification
risk minimization:

RRPN
pn = πpE[H(ĉp,+1)]+πnE[H(ĉn,−1)] (1)

where πp and πn are the class probability priors for the positive and negative classes, respec-
tively, and ĉ(i)p and ĉ(i)n are the predicted “objectness” probabilities for ground truth positive
and negative regions. This risk is estimated with samples as:

LRPN
pn =

π̂p

Np

Np

∑
i=1

H(ĉ(i)p ,+1)+
π̂n

Nn

Nn

∑
i=1

H(ĉ(i)n ,−1) (2)
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where Np and Nn are the number of ground truth positive and negative regions being consid-
ered, respectively, and the class priors are typically estimated as π̂p =

Np
Np+Nn

and π̂n =
Nn

Np+Nn
.

Notably, this training loss treats all non-positive regions in an image as negative.

2.2 PU learning

In a typical binary classification problem, input data X ∈Rd are labeled as Y ∈ {±1}, result-
ing in what is commonly termed a positive-negative (PN) problem. This implicitly assumes
having samples from both the positive (P) and negative (N) distributions, and that these sam-
ples are labeled correctly (Figure 2a). However, in some scenarios, we only have labels for
some positive samples. The remainder of our data are unlabeled (U): samples that could be
positive or negative. Such a situation is called a positive-unlabeled (PU) setting, where the
N distribution is replaced by an unlabeled (U) distribution (Figure 2c). Such a representation
admits a classifier that can appropriately include unlabeled positive regions on the correct
side of the decision boundary. We briefly review PN and PU risk estimation here.

Let p(x,y) be the underlying joint distribution of (X ,Y ), pp(x) = p(x|Y = +1) and
pn(x) = p(x|Y = −1) be the distributions of P and N data, p(x) be the distribution of U
data, πp = p(Y =+1) be the positive class-prior probability, and πn = p(Y =−1) = 1−πp
be the negative class-prior probability. In a PN setting, data are sampled from pp(x) and
pn(x) such that Xp = {xp

i }
Np
i=1 ∼ pp(x) and Xn = {xn

i }
Nn
i=1 ∼ pn(x). Let g be an arbitrary

decision function that represents a model. The risk of g can be estimated from Xp and Xn as:

R̂pn(g) = πpR̂+
p (g)+πnR̂−n (g) (3)

R̂+
p (g) = 1/Np ∑

Np
i=1 `(g(x

p
i ),+1) and R̂−n (g) = 1/Nn ∑

Nn
i=1 `(g(x

n
i ),−1), where ` is the loss

function. In classification, ` is commonly the cross-entropy loss H(t,y).
In PU learning, Xn is unavailable; instead we have unlabeled data Xu = {xu

i }
Nu
i=1 ∼

p(x), where Nu is the number of unlabeled samples. However, the negative class empiri-
cal risk R̂−n (g) in Equation 3 can be approximated indirectly [9, 10]. Denoting R−p (g) =
Ep[`(g(X),−1)] and R−u (g)=EX∼p(x)[`(g(X),−1)], and observing πn pn(x)= p(x)−πp pp(x),
we can replace the missing term πnR−n (g) =R−u (g)−πpR−p (g). Hence, we express the overall
risk without explicit negative data as

R̂pu(g) = πpR̂+
p (g)+ R̂−u (g)−πpR̂−p (g) (4)

where R̂−p (g) = 1/Np ∑
Np
i=1 `(g(x

p
i ),−1) and R̂−u (g) = 1/Nu ∑

Nu
i=1 `(g(x

u
i ),−1).

However, a flexible enough model can overfit the data, leading to the empirical risk
in Equation 4 becoming negative. Given that most modern object detectors utilize neural
networks, this type of overfitting can pose a significant problem. In [22], the authors propose
a non-negative PU risk estimator to combat this:

R̂pu(g) = πpR̂+
p (g)+max{0, R̂−u (g)−πpR̂−p (g)} (5)

We choose to employ this non-negative PU risk estimator for the rest of this work.
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2.3 PU learning for object detection
2.3.1 PU object proposals

In object detection datasets, the ground truth labels represent positive samples. Any regions
that do not share sufficient overlap with a ground truth bounding box are typically consid-
ered as negative background, but the accuracy of this assumption depends on every object
within a training image being labeled, which may not be the case (Figure 1). As shown in
Figure 2b, this results in the possibility of positive regions being proposed that are labeled
negative during training, due to a missing ground truth label; effects of this phenomenon
during training are investigated empirically in Supplementary Materials Section A. We posit
that object detection more naturally resembles a PU learning problem than PN.

We recognize that two-stage detection naturally contains a binary classification problem
in the first stage. In Faster R-CNN specifically, the RPN assigns an “objectness” score,
which is learned with a binary cross-entropy loss (Equation 2). As previously noted, the PN
nature of this loss can be problematic, so we propose replacing it with a PU formulation.
Combining Equations 2 and 5, we produce the following loss function:

LRPN
pu =

πp

Np

Np

∑
i=1

H(ĉ(i)p ,+1)+max
{

0,
1

Nu

Nu

∑
i=1

H(ĉ(i)u ,−1)−
πp

Np

Np

∑
i=1

H(ĉ(i)p ,−1)
}

(6)

Such a loss function relaxes the penalty of positive predictions for unlabeled objects.

2.3.2 Estimating πp

Figure 3: Faster R-CNN [41] RPN
with the proposed PU cross-entropy
loss. Positive class prior estimate
π̂p is updated with objectness predic-
tions ĉ, with momentum γ .

The PU cross-entropy loss in Equation 6 assumes
the class-prior probability of the positive class πp is
known. In practice, this is not usually the case, so πp
must be estimated, denoted as π̂p. For object detec-
tion, estimating πp is especially problematic because
πp is not static: as the RPN is trained, an increas-
ing proportion of region proposals will (hopefully)
be positive. While [22] showed some robustness to
πp misspecification, this was only on a fairly narrow
range of πp ∈ [0.8πp,1.2πp]. During object detection
performance, πp starts from virtually 0 and grows
steadily as the RPN improves. As such, any single
estimate π̂p poses the risk of being significantly off
the mark during a large portion of training.

To address this, we recognize that the RPN of
Faster R-CNN is already designed to infer the positive regions of an image, so we count
the number of positive regions produced by the RPN and use it as an estimator for πp:

π̂p =
NRPN

p

NRPN (7)

where NRPN is the total number of RPN proposals that are sampled for training, and NRPN
p

being those with classifier confidence of at least 0.5. Note that this estimation of πp comes
essentially for free. Given that Faster R-CNN is trained one image at a time and the preva-
lence of objects varies between images, we maintain an exponential moving average with
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momentum γ in order to stabilize π̂p (see Figure 3). This estimate π̂p is then used in the
calculation of the loss LRPN

pu and its gradients.

3 Related work

Most object detection frameworks are designed fully supervised [4, 13, 14, 34, 39, 40, 41]:
it is assumed that there exists a dataset of images where every object is labeled and such a
dataset is available to train the model. However, as discussed above, collecting such a dataset
can be expensive. Because of this, methods that can learn from partially labeled datasets have
been a topic of interest for object detection. What “partially labeled” constitutes can vary,
and many types of label missingness have been considered.

Weakly supervised object detection models [3, 37, 42] assume a dataset with image level
labels, but without instance labels. These models are somewhat surprisingly competent at
identifying approximate locations of objects in an image without any object-specific cues, but
have a harder time with precise localization. This is especially the case when there are many
of the same class of object in close proximity to each other, as individual activations can blur
together, and the lack of bounding boxes makes it difficult to learn precise boundaries. Other
approaches consider settings where bounding boxes are available for some classes (e.g.,
PASCAL VOC’s 20 classes) but not others (e.g., ImageNet [6] classes). LSDA [18] does this
by modifying the final layer of a CNN [25] to recognize classes from both categories, and
[46] improves upon LSDA by taking advantage of visual and semantic similarities between
classes. OMNIA [38] proposes a method merging datasets that are each fully annotated for
their own set of classes, but not each other’s.

There are also approaches that consider a single dataset, but the labels are undercom-
plete across all classes. This setting most resembles what we consider in our paper. In [8],
only 3-4 annotated examples per class are assumed given to start; additional pseudo-labels
are generated from the model on progressively more difficult examples as the model im-
proves. Soft-sampling has also been proposed to re-weight gradients of background regions
that either have overlap with positive regions or produce high detection scores in a sepa-
rately trained detector [50]; experiments were done on PASCAL VOC with a percentage of
annotations discarded and on a subset of OpenImages [26].

Positive-unlabeled learning has been proposed to improve statistical models with limited
labeled data [29, 30]. [22, 51] analyzed the theoretical effectiveness of positive-unlabeled
risk estimation on binary classification tasks, though with the proportion of positive class ex-
amples preset and known to the model. [10, 20] infer the positive class prior with additional
classifiers or matching algorithms. Our work extends the application of positive-unlabeled
learning to alleviate the incomplete labels that can be found in most object detection datasets.

4 Experiments

For our experiments, we use the original Faster-RCNN [41], with a ResNet101 [16] feature
extractor (without feature pyramid network [33]) pre-trained on ImageNet [6]. To control the
level of missingness of each dataset, each annotation from a object class provided by original
dataset is randomly discarded with a probability ρ . This effectively makes the available
annotations to be 1−ρ of total annotations on average.
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(a) ρ = 0.4 (b) ρ = 0.5 (c) ρ = 0.6

Figure 4: Positive class prior π̂p estimated during training of Faster R-CNN on PASCAL
VOC versus from hand-tuning πp as a hyperparameter, for instance label missingness pro-
portion ρ = {0.4,0.5,0.6}.

4.1 Hand-tuning versus estimation of πp

As discussed in Section 2.3.2, PU risk estimation requires the prior πp. We experiment with
two ways of determining πp. In the first method (Hand-Tuned), we treat πp as a constant
hyperparameter and tune it by hand. In the second (Estimated), we infer πp as described in
Equation 7, setting momentum γ to 0.9. We compare the estimate π̂p inferred automatically
with the hand-tuned πp that yielded the highest mAP on PASCAL VOC. To see how our
estimate changes in response to label missingness, when assembling our training set, we
remove each annotation from an image with probability ρ , giving us a dataset with 1− ρ

proportion of the total labels, and then do our comparison for ρ = {0.4,0.5,0.6} in Figure 4.
In all tested settings of ρ , the estimation π̂p increases over time before stabilizing. Such

a result matches expectations, as when an object detection model is first initialized, its pa-
rameters have yet to learn good values, and thus the true proportion of positive regions πp is
likely to be quite low. As the model trains, its ability to generate accurate regions improves,
resulting in a higher proportion of regions being positive. This in turn results in a higher true
value of πp, which our estimate π̂p follows. As the model converges, πp (and π̂p) stabilizes
towards the true prevalence of objects in the dataset relative to background regions. Inter-
estingly, the final value of π̂p settles close to the value of πp found by treating the positive
class prior as a static hyperparameter, but consistently above it. We hypothesize that this is
due to a single static value having to hedge against the early stages of training, when πp is
lower. We use our proposed method of auto-inferring πp for the rest of our experiments, with
γ = 0.9, rather than hand-tuning it as a hyperparameter.

4.2 PU versus PN on PASCAL VOC and MS COCO
We investigate the effect that incomplete labels have on object detection training for the
popular datasets PASCAL VOC [12] and MS COCO [32], using Faster R-CNN [41] with
a ResNet101 [16] convolutional feature extractor. In order to quantify the effect of missing
labels, we artificially discard a proportion ρ of the annotations. We compare three settings,
each for a range of values of ρ . Given that the annotations are the source of the learning
signal, we keep the number of total instances constant between settings for each ρ as follows:

• PN: We remove a proportion of labels from every image in the dataset, such that the
total proportion of removed labels is equal to ρ , and all images are included in the
training set. We then train the detection model with a PN objective, as is normal.
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(a) PASCAL VOC (b) MS COCO

Figure 5: mAP at IoU 0.5 (AP50) on (a) PASCAL VOC and (b) MS COCO, for a range of
label missingness ρ .

• Full-PN: We discard a proportion ρ of entire images and their labels, resulting in a
dataset of fewer images, but each of which retains its complete annotations.

• PU: We use the same images and labels as in PN, but instead train with our proposed
PU objective.

A comparison of mean average precision (mAP) performance at IoU 0.5 for these 3
settings on PASCAL VOC and MS COCO is shown in Figure 5. As expected, as ρ is
increased, the detector’s performance degrades. Focusing on the results for PN and Full-
PN, it is clear that for an equal number of annotated objects, having fewer images that are
more thoroughly annotated is preferable to a larger number of images with less thorough
labels. On the other hand, considering object detection as a PU (PU) problem as we have
proposed allows us to improve detector quality across a wide range of label missingness.
While having a more carefully annotated set (Full-PN) is still superior, the PU objective
helps close the gap. Interestingly, there is a small gain (PASCAL VOC: +0.2, MS COCO:
+0.3) in mAP at full labels (ρ = 0), possibly due to better learning of objects missing labels in
the full dataset. Additional analysis on the improvements to RPN recall are in Supplemental
Materials Section B.

4.3 Visual Genome
Visual Genome [24] is a scene understanding dataset of objects, attributes, and relationships.
While not as commonly used as an object detection benchmark as PASCAL VOC or MS
COCO, Visual Genome is popular when relationships or attributes of objects are desired, as

Table 1: Detector performance on Visual Genome, with full labels, at various IoU thresholds.
“Y” indicates weighting by class frequency, while “N” denotes without weighting.

AP25 AP50 AP75
Y N Y N Y N

PN 12.09 22.79 9.11 17.35 2.46 9.98
PU 13.83 25.56 10.44 19.89 4.52 11.79
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(a) (b)

Figure 6: Lesion sensitivity versus (a) false positive rate and (b) IoU threshold for different
false positive (FP) allowances per image. We compare the baseline Faster R-CNN variant in
[52] trained with a PN objective versus the proposed PU objective.

when Faster R-CNN is used as a pre-trained feature extractor for Visual Question Answer-
ing [1, 2]. Given the large number of classes (33,877) and the focus on scene understanding
during the annotation process, the label coverage of all object instances present in each image
is correspondingly lower. In order to achieve its scale, the labeling effort was crowd-sourced
to a large number of human annotators. As pointed out in [12], even increasing from 10
classes of objects in PASCAL VOC2006 to the 20 in VOC2007 resulted in a substantially
larger number of labeling errors, as it became more difficult for human annotators to remem-
ber all of the object classes. This problem is worse by several orders of magnitude for Visual
Genome. While the dataset creators implemented certain measures to ensure quality, there
still are many examples of missing labels. In such a setting, the proposed PU risk estimation
is especially appropriate, even with all included labels.

We train ResNet101 Faster R-CNN using both PN and the proposed PU risk estimation
on 1600 of the top object classes of Visual Genome, as in [2]. We evaluate performance on
the classes present in the test set and report mAP at various IoU thresholds {0.25,0.50,0.75}
in Table 1. We also show mAP results when each class’s average precision is weighted
according to class frequency, as done in [2]. The PASCAL VOC and MS COCO results in
Figure 5 indicate that we might expect increasing benefit from utilizing a PU loss as missing
labels become especially prevalent, and for Visual Genome, where this is indeed the case, we
observe that PU risk estimation outperforms PN by a significant margin, across all settings.
Similar improvements are also observed on OpenImages [23, 26], a dataset with a similar
degree of object missingness (Supplemental Materials Section C).

4.4 DeepLesion

The recent progress in computer vision has attracted increasing attention towards potential
health applications. To encourage deep learning research in this direction, the National Insti-
tutes of Health (NIH) Clinical Center released DeepLesion [52], a dataset consisting of 32K
CT scans with annotated lesions. Unlike PASCAL VOC, MS COCO, or Visual Genome,
labeling cannot be crowd-sourced for most medical datasets, as accurate labeling requires
medical expertise. Even with medical experts, labeling can be inconsistent; lesion detec-
tion is a challenging task, with biopsy often necessary to get an accurate result. Like other
datasets labeled by an ensemble of annotators, the ground truth of medical datasets may
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contain inconsistencies, with some doctors being more conservative or aggressive in their
diagnoses. Due to these considerations, a PU approach more accurately characterizes the
nature of the data.

We re-implemented the modified version of Faster R-CNN described in [52] as the base-
line model and compare against our proposed model using the PU objective, making no other
changes. We split the dataset into 70%-15%-15% parts for training, validation, and test. Fol-
lowing [52], we report results in terms of free receiver operating characteristic (FROC) and
sensitivity of lesion detection versus intersection-over-union (IoU) threshold for a range of
allowed false positives (FP) per image (Figure 6). In both cases, we show that switching
from a PN objective to a PU one results in gains in performance.

5 Conclusion and future work

Having observed that object detection data more closely resembles a positive-unlabeled (PU)
problem, we propose training object detection models with a PU objective. Such an objective
requires estimation of the class probability of the positive class, but we demonstrate how this
can be estimated dynamically with little modification to the existing architecture. Making
these changes allows us to achieve improved detection performance across a diverse set of
datasets, some of which are real datasets with significant labeling difficulties. While we
primarily focused our attention on object detection, a number of other popular tasks share
similar characteristics and could also benefit from being recast as PU learning problems (e.g.,
segmentation [17, 35, 43], action detection [15, 19, 45]).

In our current implementation, we primarily focus on applying the PU objective to the
binary object-or-not classifier in Faster R-CNN’s Region Proposal Network. A natural ex-
tension of this work would be to apply the same objective to the second stage classifier,
which must also separate objects from background. However, as the second stage classifier
outputs one of several classes (or background), the classification is no longer binary, and
requires estimating multiple class priors {πc}k

c=1 [51], which we leave to future work. Such
a multi-class PU loss would also allow extension to single-stage detectors like SSD [34] and
YOLO [39, 40]. Given the performance gains already observed, we believe this to be an
effective and natural improvement to the object detection classification loss.
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A Example forgetting in object detection

Figure 7: Detections on a PASCAL VOC train set image missing annotations throughout
training: only the sofa in the lower left has a label. Each column shows detections directly
before (top) and after (bottom) the model is trained on the image shown, for each epoch.
While the sofa is consistently detected (purple box) after being learned, the unlabeled objects
(2 monitors, a chair) are repeatedly found and then suppressed after being trained upon.

In a recent study of training dynamics of neural network classifiers, Toneva et al. [47] de-
fined a “forgetting event” as a training example switching from being classified correctly by
the model to being classified incorrectly during training. It was found that certain examples
were forgotten more frequently than others while others were never forgotten (termed “un-
forgettable”), with the degree of forgetting for individual examples being consistent across
neural network architectures and random seeds. When visualized, the forgotten examples
tend to have atypical or uncommon characteristics (e.g., pose, lighting, angle), relative to
“unforgettable” examples. Interestingly, a significant number of “unforgettable” examples
could be removed from the training set with only a marginal reduction in test accuracy, if the
“hard” examples were kept. This implies that the “hard” examples play a role akin to support
vectors in max-margin learning, while easier “unforgettable” examples have little effect on
the final decision boundary.

Within the context of object detection datasets, we hypothesize that unlabeled object
instances form a similar group of hard examples that are also learned and then forgotten
throughout training. Unlike the inter-batch catastrophic forgetting in [47], however, where
hard examples are learned while part of the current minibatch and then forgotten while learn-
ing other examples, unlabeled samples in object detection are learned from other examples
and then suppressed after incurring misclassification losses during training (see Figure 7).

Unlabeled instances strongly resemble positive examples throughout the rest of the dataset,
but their lack of labels mean that the typical PN classification objective incentivizes learning
them as negatives. Given that hard examples have a strong influence on classifier boundaries,
having unlabeled examples trained as negatives may prove especially detrimental to training.

We perform a similar study as [47] and investigate forgetting events on PASCAL VOC [12]
by tracking detection rates of labeled and unlabeled instances in the training set throughout
learning. In particular, an object is considered detected if the detector produces a bounding
box with intersection over union (IoU) of at least 0.5 and the classifier is at least 80% con-
fident in the correct class. We track whether or not an object was detected directly before
the image it belongs to is trained upon, and then again after the gradients have been applied.
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(a) Labeled objects (b) Unlabeled objects

Figure 8: Detection rates of objects before and after training on their corresponding images
for (a) labeled instances and (b) instances with labels withheld during training.

These indicator variables are then combined across objects for each epoch and reported as a
percentage. While PASCAL VOC does naturally have unlabeled instances, we do not have
access to these without a re-labeling effort. As such, we remove 10% of object annotations
randomly across all object classes during training, and use them to calculate detection rates
for this experiment.

Detection rates for labeled and unlabeled objects over time are shown in Figure 8. As
expected, the model learns to detect a higher percentage of labeled instances over time, and
objects are overall more likely to be detected immediately after the detector trains on them.
Despite not having an explicit learning signal, unlabeled objects are still learned throughout
training, but at a lower rate than labeled ones. In contrast with labeled objects, unlabeled
object detections are discouraged with each PN gradient, leading to a dip in overall de-
tection rates immediately after training. Despite this, overall detection rates of unlabeled
objects grows through the first 5 epochs of training, implying a repeated cycle of learning
unlabeled objects from other intra-class examples, forgetting them when explicitly trained
against them, and then learning them again. Given the undesirability of this forced suppres-
sion of detected objects, we seek a method to remedy this behavior.

B Recall of Region Proposals

Figure 9: Recall of top 500 proposals
from RPN after training on PASCAL
VOC2007 when ρ = 0.5.

To investigate the effect of the PU risk estimator on
the quality of the proposals from RPN stage, we ex-
amine the recall of the top 500 proposals, compared
with the complete annotations. Higher recall means
there are more proposals that match with the full-
labeled annotations. In Figure 9, the recalls using
the PU risk estimator are higher than those using the
PN risk estimator. This illustrates the inclusion of
more object proposals that are not included by the
PN risk estimator because the corresponding ground
truth annotations are missing.
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C OpenImages
OpenImages [23, 26] is a large object dataset consisting of 15.4 million bounding boxes
from 600 classes across 1.9 million images. In order to achieve its scale, the labeling effort
was crowd-sourced to a large number of human annotators. As pointed out in [12], even
increasing from 10 classes of objects in PASCAL VOC2006 to the 20 in VOC2007 resulted
in a substantially larger number of labeling errors, as it became more difficult for human
annotators to remember all of the object classes. With 500 classes, this problem is worse
by an order of magnitude for OpenImages. While the creators of OpenImages designed
an annotator training process to insure quality, there still are many examples of missing
labels. As such, PU learning as proposed is especially appropriate, even when considering
full labels.

As in Section 4.2, we train a ResNet101 Faster R-CNN object detector with both PN and
PU classification losses. Given the large size of the dataset, we restrict our analysis to 50 of
the most prevalent classes, and subsample 140K images from the dataset containing at least
one of the selected classes. Of these 140K images, we train on 100K with full annotations,
and hold out 10K for validation and 30K as our test split. We observe that, all other things
equal, switching to our proposed PU approach results in an increase of +3.0, +3.0, and +5.0
for mAPs with IoU thresholds {0.25,0.50,0.75} (see Table 2).

Table 2: Detector performance on a subset of OpenImages at various IoU thresholds.

Method AP25 AP50 AP75

PN 37.7 33.6 20.7
PU 40.7 36.6 25.7
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