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Abstract

We design blackbox transfer-based targeted adversar-
ial attacks for an environment where the attacker’s source
model and the target blackbox model may have disjoint la-
bel spaces and training datasets. This scenario significantly
differs from the “standard” blackbox setting, and warrants
a unique approach to the attacking process. Our methodol-
ogy begins with the construction of a class correspondence
matrix between the whitebox and blackbox label sets. Dur-
ing the online phase of the attack, we then leverage repre-
sentations of highly related proxy classes from the whitebox
distribution to fool the blackbox model into predicting the
desired target class. Our attacks are evaluated in three com-
plex and challenging test environments where the source
and target models have varying degrees of conceptual over-
lap amongst their unique categories. Ultimately, we find
that it is indeed possible to construct targeted transfer-
based adversarial attacks between models that have non-
overlapping label spaces! We also analyze the sensitivity
of attack success to properties of the clean data. Finally,
we show that our transfer attacks serve as powerful ad-
versarial priors when integrated with query-based methods,
markedly boosting query efficiency and adversarial success.

1. Introduction
The intrigue of blackbox adversarial attacks is that only

limited knowledge of the target model is assumed, making
them more difficult but also more practical. Of the several
blackbox techniques, transfer-based attacks have become
popular because they do not rely on repetitively querying
the target model during attack generation [5, 35, 15, 14, 27].
While modern query-based methods are powerful [3, 12,
33], they are susceptible to simple input rate throttling de-
fenses because they often require thousands of inquires per
adversarial example. Despite this no-query advantage, a
glaring weakness in the design and evaluation of current
transfer attacks is the implicit assumption that the attacker’s
source model is trained on the exact same dataset as the

Figure 1: Overview of attack setup and procedure.

target blackbox model! This oversight is largely due to the
common practice of testing transfers exclusively between
pre-trained models from the same benchmark dataset (e.g.,
MNIST, CIFAR-10, and ImageNet) and has likely lead to
overly optimistic estimates of transferability that may not
translate to real-world settings, in which an attacker may
not have access to the target model’s data.

In this work, we explore the potency of transfer attacks
in a much more restrictive setting, where this shared dataset
assumption is eliminated. We draw inspiration from the re-
cent findings of Inkawhich et al. [14], who observe that tar-
geted transfer attacks maintain potency when there is zero
training data overlap, yet significant label space overlap be-
tween the source and target models. Taking it a step further,
here we investigate the feasibility of targeted transfer at-
tacks when not only is there zero training data overlap, but
also no label space overlap between the source and target
model training distributions. Upon initial consideration, the
premise of this disjoint label space transfer scenario may
seem absurd. The formulation of most contemporary tar-
geted attacks (including [14]) boils down to maximizing the
likelihood of a target class. However, if the attacker’s white-



box model does not have the target class in its label space,
how can targeted transfer be optimized for? Our primary
goal is thus to probe whether or not it is possible to achieve
attack success in such settings, and if so, to what extent.

Figure 1 shows a basic overview of our attack setup and
procedure. Given a whitebox and blackbox model that are
trained on unique class sets, we propose first construct-
ing a correspondence matrix from the blackbox’s predic-
tions on samples from the whitebox distribution, to iden-
tify any relationships that exist between classes across la-
bel spaces. This is followed by an adversarial noise gen-
eration phase, which leverages highly-related proxy classes
from the whitebox’s label space to induce the desired tar-
geted response by the blackbox. Intuitively, our pro-
posed attack methodology seeks to exploit a shared fea-
ture set, along with a set of potentially shared adversarial
sub-spaces [19, 27] between the two training distributions,
whose presence is suggested by high responses in the cor-
respondence matrix.

As a part of our core experiments, we design several
unique test environments of varying difficulty that re-define
the whitebox and blackbox training distributions. Ulti-
mately, we find that in each environment a variety of target
classes in the blackbox model’s label space can be reliably
attacked. We also observe the particular adversarial noise-
generation algorithm can have a large impact on transfer-
ability and error rates. Specifically, attacks that leverage
the intermediate feature space of the whitebox [13, 14] ap-
pear to be more potent than attacks that use the output
layer [5, 23]. Finally, we perform experiments where small
amounts of queries to the blackbox model are allowed dur-
ing attack generation, and find that our transfer attacks can
be used as powerful priors to reduce the number of queries
necessary to achieve targeted attack success. Overall, we
demonstrate that it is in fact possible to achieve targeted
transfer between models with no label space overlap and
outline a novel method for exploiting such a vulnerability.

2. Related work
“Standard” transfer attacks. Within the topic area of

blackbox transfer-based adversarial attacks [18], there are
several predominant methodologies for creating adversarial
noise, and one overwhelmingly popular way to evaluate at-
tack effectiveness. Most works closely follow the design
of whitebox attacks [8, 25, 17], and incorporate additional
optimization tricks and regularization terms in an effort to
reduce over-fitting to the whitebox model’s decision bound-
aries and architecture [5, 6, 22, 35, 36, 23, 39]. Uniquely,
feature space attacks create adversarial noise to manipu-
late the intermediate layer representations of the white-
box, and in many cases achieve state-of-the-art transferabil-
ity [30, 15, 11, 13, 24, 21, 14]. The “standard” approach to
evaluate these attacks is to transfer between different model

architectures trained on the same benchmark datasets (e.g.,
CIFAR-10 or ImageNet). Thus, the measurement of trans-
ferability refers to attack potency across deep neural net-
work (DNN) architectures, but carries the (significant) im-
plicit assumption that the models have been trained on the
exact same data distribution and label set.

Reducing attacker knowledge. Some recent works
have considered blackbox transfer attacks in more strict set-
tings, where the shared dataset assumption is relaxed. Both
Bose et al. [2] and Li, Guo and Chen [20] develop un-
targeted attacks in the non-interactive blackbox (NoBox)
threat model, which specifies that the attacker: (1) may
not issue queries to the target model; and (2) has a “refer-
ence dataset” which is sampled from the same distribution
as the target model’s training set (so, the label space turns
out to be the same). By contrast, we focus on targeted at-
tacks and do not assume access to any data sampled from
the blackbox distribution when training our whitebox mod-
els. Naseer et al. [27] train a generator network to produce
image-agnostic un-targeted attacks between models with no
label space overlap; however, do not consider targeted at-
tacks within this threat model. Lastly, Inkawhich et al. [14]
construct “cross-distribution” transfer scenarios with zero
training data overlap but significant (yet incomplete) label
space overlap between the whitebox and blackbox models.
Through experiments, they confirm that targeted adversar-
ial examples can be constructed for the overlapping classes,
but do not attempt to attack any non-overlapping classes.

3. Methodology
3.1. Establishing class correspondences

The first phase of our attack methodology is to model the
relationships between the classes of the whitebox and black-
box. Note, this step is unique to our disjoint label space
setting, as in previous works the class relationships are ex-
plicitly encoded by the intersection of the label sets. We
accomplish this task by forward passing a limited amount
of data from each category of the whitebox model’s train-
ing distribution through the target model and recording the
predictions in a class correspondence matrix. Intuitively,
this matrix describes how the blackbox model responds to
the presence of whitebox data features, which will become
relevant when constructing adversarial perturbations.

Although the whitebox data is technically out-of-
distribution (OOD) w.r.t. the blackbox’s training set, the
closed-world assumption commonly made during DNN
training means the blackbox has poor confidence calibra-
tion on OOD data [1], allowing for this type of analysis. As
an attacker, we make note of any hot-spots in the correspon-
dence matrix, which represent promising (target, proxy) re-
lationships to potentially exploit (e.g., (leopard, cat)
and (spider, ladybug) in Figure 1). Importantly, we
consider this step to occur “offline” w.r.t. the actual attack,

2



as it is only necessary to do once (before computing any
adversarial examples) and does not involve inputting adver-
sarially perturbed data through the target model.

It is worth noting a few basic assumptions made in this
step. First, we assume the adversary has at least some sam-
ples from the training distribution of their own whitebox
models, as opposed to only having a pre-trained model.
We believe this to be a realistic assumption, as in most
cases the attacker may either be using a model trained on
a widely available benchmark dataset, or would have had to
train the model themselves. The second assumption is that
the attacker is allowed to issue a small amount of queries
to the target model and receive predictions (only the pre-
dicted class is necessary, not the full probability vectors).
Since this is the most basic function of an “oracle” black-
box model, we believe this to be reasonable.

3.2. Computing adversarial perturbations
The second phase of our methodology is to construct the

targeted adversarial perturbations. We start with a clean im-
age x and target class ytgt from the blackbox distribution.
The goal is then to compute adversarial noise � using the
whitebox model such that the blackbox model classifies the
adversarial example x + � as ytgt (as shown in the bottom
of Figure 1). To do this, we first index the class correspon-
dence matrix with ytgt to find a highly correlated proxy
class yproxy from the whitebox distribution that can be
used to represent ytgt during attack generation. Intuitively,
since ytgt and yproxy images are interpreted similarly by
the blackbox model, imparting the features of yproxy onto
x through an adversarial noising process may in-turn cause
the blackbox model to misclassify the adversarial example
as ytgt. We explore two fundamentally different approaches
for optimizing the adversarial noise: decision-space meth-
ods and feature-space methods.

Decision-space Attack. Decision-space methods work
to directly manipulate the output-layer signals of the white-
box model. Often, this is accomplished by minimizing the
classification loss w.r.t. a designated target class (in our case
yproxy). Thus, the adversarial perturbation is quasi-optimal
for the whitebox, as it is designed to traverse exact deci-
sion boundaries. Let f represent the whitebox model and
f(x) be the predicted probability distribution over its set of
classes. We use the powerful Targeted Momentum Iterative
Method (TMIM) [5] as a representative of decision-space
attacks, whose optimization objective is

min
�2S(x;�)

H
(
f(x+ �); yproxy

)
: (1)

Here, H(f(x + �); yproxy) is the cross-entropy between
the whitebox’s predicted distribution and yproxy . The con-
straint S(x; �) defines an allowable perturbation set w.r.t. x,
often to keep � imperceptible. Optimizing this objective re-
sults in adversarial examples capable of fooling the white-

box model into predicting yproxy with high confidence. We
hypothesize that by pushing x+� into a high probability re-
gion of yproxy in the whitebox, these decision-based attacks
may in-turn cause the blackbox to regard x+ � as ytgt.

Feature-space Attack. As the name suggests, feature
space methods compute adversarial noise using the interme-
diate feature information of the whitebox [13, 14]. Rather
than optimizing to explicitly cross decision boundaries,
these methods make the adversarial examples “look like”
the target class (or in our case yproxy) in feature space. In
this work, we use the multi-layer Feature Distribution At-
tack (FDA) [14] as our representative feature space method.
For setup, we first train the necessary auxiliary feature dis-
tribution models for each proxy class at a specified set of
whitebox model layers L = f‘1; : : : ; ‘Ng. Note, the class
c, layer ‘ auxiliary model inputs the whitebox’s layer ‘ fea-
ture map f‘(x), and outputs the probability that it is from
an input of class c (i.e., it outputs p(y = cjf‘(x))).

Using the trained auxiliary models, the FDA attack ob-
jective function can then be defined as

max
�2S(x;�)

LFDA(f; x; yproxy; �;L; �); (2)

where

LFDA(f; x; y; �;L; �) =

1

jLj
∑
‘2L

p(yjf‘(x+ �)) + �
kf‘(x+ �)� f‘(x)k2

kf‘(x)k2

:
(3)

By maximizing LFDA, the adversarial noise: (1) maxi-
mizes the likelihood that intermediate features from across
the whitebox’s feature hierarchy belong to the proxy class;
and (2) enforces that the perturbed image’s feature map is
significantly different from the clean image’s feature map,
as measured by a normalized L2 distance.

Our intuition for why this method has promise stems
from the discussed potential overlap of features in the
whitebox and blackbox data distributions. Particularly, if
there exists strong (target, proxy) relationships in the class
correspondence matrix, we posit that this is clear evidence
that the blackbox model has learned features that appear
in the whitebox data distribution. Thus, the FDA attack is
well-phrased to manipulate any shared features that may ex-
ist between a given (target, proxy) class pair. Further, we
hypothesize that since the perturbation objective of FDA is
detached from the exact decision boundary structure of the
whitebox (which is irrelevant to the blackbox model any-
way), it may yield higher transferability because the opti-
mization is focused on the feature compositions.

4. Disjoint label space transfer environments
Since we are not executing transfers in standard bench-

mark settings, we carefully design novel test environments
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Table 1: Disjoint ImageNet Subsets Test 1 and Test 2

DINS Test 1 DINS Test 2

A B A B

fish crab dog-hound house-cat
bird butterfly dog-terrier big-cat
lizard snake dog-spaniel lizard
spider beetle dog-retriever snake

dog-hound dog-terrier insect fish
dog-spaniel dog-retriever beetle bird
house-cat big-cat butterfly spider
insect fungus train small-vehicle
boat train instrument large-vehicle

small-vehicle large-vehicle boat computer
mustelids big-game turtle big-game
turtle monkey crab mustelids

drinkware clothing drinkware sports-ball
fruit sports-ball fruit clothing

instrument computer monkey fungus

to evaluate the efficacy and scalability of our attacks across
a spectrum of realistic settings. We consider three dis-
tinct “cross-distribution” transfer scenarios. The first two,
named Disjoint ImageNet Subsets (DINS) Test 1 and Test
2, are manually constructed by partitioning ImageNet [4]
into challenging subsets. The third scenario involves trans-
fers between ImageNet and Places365 [40] models.

DINS Test 1 and 2. To assemble the DINS Test 1 and
2 environments, we first establish 30 distinct super-classes
that are comprised of five individual ImageNet classes each.
For example, we create a bird class by aggregating the
ImageNet classes [ 10:brambling; 11:goldfinch; 12:house-
finch; 13:junco; 14:indigo-bunting ], and a big-cat class
by aggregating [ 286:cougar; 287:lynx; 289:snow-leopard;
290:jaguar; 292:tiger ]. The full list is shown in Appendix
A. The super-classes are then partitioned as shown in Ta-
ble 1 to create the two DINS environments. Each is com-
prised of non-overlapping 15-class “A” and “B” splits, to
be referred to as Test 1.A/B and Test 2.A/B. In our exper-
iments, the blackbox target models in each test are trained
on the “B” splits, while the attacker’s whitebox models are
trained on the “A” splits. To be clear, we only intend to
attack between “A” and “B” models under the same envi-
ronment, i.e., Test 1.A!Test 1.B and Test 2.A!Test 2.B.

We remark that the DINS tests are created to represent
different difficulty levels. DINS Test 1 illustrates an in-
tuitively more promising transfer case, because there are
some obvious conceptual overlaps between the classes in
Test 1.A and 1.B that may lead to natural (target, proxy)
relationships. For example, both contain the general con-
cepts of dogs, cats and vehicles. However, the challenge is
that both have different supports (i.e., underlying ImageNet
classes) for what makes up a dog, cat and vehicle. DINS
Test 2 represents an intuitively harder transfer environment,
where there is much less conceptual overlap between the
label spaces of the whitebox (Test 2.A) and blackbox (Test
2.B). Notice, all four of the dog sub-breeds are in Test 2.A,
while all of the cat and vehicle categories are in Test 2.B.
Here, it is much less obvious which Test 2.B classes can be

targeted with the available proxy classes in Test 2.A.
ImageNet to Places365. Our third transfer scenario is

principally created to evaluate the scalability of our attacks
to more complex environments. We consider a situation
where the attacker has whitebox access to ImageNet models
and wishes to create targeted attacks for Places365 black-
box models. The additional complexity in this experiment
comes from two primary sources. First, the sheer increase
in the number of classes in both the whitebox and black-
box label spaces: ImageNet has 1000 classes and Places365
has 365 classes. Second, there is generally a finer granu-
larity between the categories in both distributions. For ex-
ample, instead of classifying at the stratum of dogs, cats,
fish, etc. (as we do in the DINS tests), these more com-
plex models have to classify between highly nuanced object
sub-categories (e.g., there are over 110 dog breeds in Ima-
geNet). From an attacking perspective, such an increase in
complexity and granularity may make it more difficult to re-
liably target individual classes in the Places365 label space.
Finally, we note that the ImageNet and Places365 datasets
technically have about 10 classes worth of label space over-
lap, which represents a very small percentage of the union
of categories. However, we intend to transfer across both
overlapping and non-overlapping sectors of the label space.

5. Experiments
Our experiments are split into a few main sections. First,

we describe the setup and results of attacking in the DINS
Test 1 and 2 environments. We then perform an analysis
of source class impact, and show an extension of the trans-
fer attacks to an environment where limited queries to the
blackbox may be allowed. Finally, we discuss the results of
transferring in the ImageNet to Places365 environment.

5.1. Experimental setup
On the Test 1.B and Test 2.B splits, we train ResNet-

34 (RN34) [9], ResNet-152 (RN152) [9], DenseNet-169
(DN169) [10], VGG19bn [32], MobileNetv2 (MNv2) [31],
and ResNeXt-50 (RXT50) [37] models to be used as black-
boxes. We then train ResNet-50 (RN50) and DenseNet-121
(DN121) models on both Test 1.A and Test 2.A to act as
whiteboxes. A variety of blackbox architectures, includ-
ing ones that are not from the same architectural family as
the whitebox models, are purposely considered to produce
a quality estimate of transferability.

When optimizing the adversarial objectives, both TMIM
and FDA attacks use an L1 � = 16=255 noise constraint
and iterate for 10 perturbing iterations while including mo-
mentum [6, 35, 14]. We opt to use an ensemble variant of
each attack method, where adversarial noise is optimized
using both the RN50 and DN121 whiteboxes concurrently
[23]. Note, the FDA attack method involves a tuning step
to select which layers are included in the attacking layer set
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