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Abstract

Naively trained neural networks tend to ex-
perience catastrophic forgetting in sequential
task settings, where data from previous tasks
are unavailable. A number of methods, us-
ing various model expansion strategies, have
been proposed recently as possible solutions.
However, determining how much to expand
the model is left to the practitioner, and often
a constant schedule is chosen for simplicity,
regardless of how complex the incoming task
is. Instead, we propose a principled Bayesian
nonparametric approach based on the Indian
Buffet Process (IBP) prior, letting the data
determine how much to expand the model
complexity. We pair this with a factoriza-
tion of the neural network’s weight matrices.
Such an approach allows the number of fac-
tors of each weight matrix to scale with the
complexity of the task, while the IBP prior
encourages sparse weight factor selection and
factor reuse, promoting positive knowledge
transfer between tasks. We demonstrate the
effectiveness of our method on a number of
continual learning benchmarks and analyze
how weight factors are allocated and reused
throughout the training.

1 Introduction

Deep learning, trained primarily on a single task un-
der the assumption of independent and identically dis-
tributed (i.7.d.) data, has made enormous progress in
recent years. However, when naively trained sequen-
tially on multiple tasks, without revisiting previous
tasks, neural networks are known to suffer catastrophic
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forgetting (McCloskey & Cohenl, [1989; Ratcliff, |[1990):
the ability to perform old tasks is often lost while learn-
ing new ones. In contrast, biological life is capable of
learning many tasks throughout a lifetime from decid-
edly non-i.i.d. experiences, acquiring new skills and
reusing old ones to learn fresh abilities, all while re-
taining important previous knowledge. As we strive
to make artificial systems increasingly more intelligent,
natural life’s ability to learn continually is an important
capability to emulate.

Continual learning (Parisi et al., [2019) has attracted
considerable attention recently in machine learning
research, and a number of desiderata have emerged.
Models should be able to learn multiple tasks sequen-
tially, with the eventual number and complexity of tasks
unknown. Importantly, new tasks should be learned
without catastrophically forgetting previous ones, ide-
ally without having to keep any data from previous
tasks to re-train on. Models should also be capable of
positive transfer: previously learned tasks should help
with the learning of new tasks. Knowledge transfer
between tasks maximizes sample efficiency, with this
particularly important when data are scarce.

A number of methods (Rusu et al.l 2016} Zhang et al.,
2019; Lee et al., 2020) address continual learning
through expansion: the model is grown with each ad-
ditional task. By diverting learning to new network
components for each task, these approaches mitigate
catastrophic forgetting by design, as previously learned
parameters are left undisturbed. A key challenge for
these strategies is deciding when and how much to
expand the network. While it is typically claimed that
this can be tailored to the incoming task, doing so
requires human estimation of how much expansion is
needed, which is not a straightforward process. Instead,
a preset, constant expansion is commonly employed for
each new task.

Rather than relying on engineered heuristics, we choose
to let the data dictate the model-expansion rate, em-
ploying a Bayesian nonparametric approach. Specifi-
cally, we couple rank-1 weight factor (WF) dictionary
learning with the Indian Buffet Process (IBP) (Ghahra;
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Figure 1: Layer-wise weight factors for continual learning. Dictionaries of weight factors W and W§ are shared
across all tasks, and a task-specific sparse diagonal matrix A? specifies the active factors (in this figure, elements
of Af that are black are zero, and brighter shades correspond to larger numbers). The weighted sum of the active
weight factors yields the weight matrix for a particular task. The number of factors (columns of W and rows of
Wf;) grows as needed with more tasks, with select factors being reused in future tasks. Best viewed in color.

mani & Griffiths, 2006)), creating a framework we call
IBP-WPF. An IBP-based formulation allows automatic
scaling of the network, but only as needed, even if the
number or complexity of future tasks is unknown ini-
tially. An IBP prior also naturally encourages recycling
of previously learned skills, enabling positive transfer
between tasks, which other expansion methods tend
to either ignore or deal with in a more ad hoc manner.
Finally, Bayesian modeling enables model sampling,
allowing for both ensembling models for increased accu-
racy and uncertainty estimation, which are important
but rarely discussed topics in continual learning.

Our main contributions are as follows. (i) We intro-
duce learning a rank-1 weight factor dictionary for a
neural network expected to perform multiple tasks. We
then introduce the Indian Buffet Process as a prior
for each task’s weight factor selection, showing why
the IBP is a natural choice given continual learning’s
desiderata. (i) We introduce a simple-but-effective
method based on feature statistics for inferring task
identity (ID) in incremental class settings. (iii) The ef-
fectiveness of IBP-WF is demonstrated on a number of
continual learning tasks, outperforming other methods.
We also visualize the weight factor usage across tasks,
confirming both sparsity and reuse of these factors.

2 Methods

2.1 'Weight Factor Dictionary Learning

Consider a multilayer perceptron (MLP) with layers
{=1,...,L. In a continual learning setting, we would

like this neural network to learn multiple tasks. Given
differences between tasks, the neural network may re-
quire a different set of weight matrices {W¢}l | for
each task t. While {W¢}L_ could be learned sepa-
rately for each task, such a model does not incorporate
knowledge reuse, and the total number of model pa-
rameters grows linearly with the number of tasks T.
While immune from catastrophic forgetting, such an
approach is inefficient in both computation and data.

Instead of completely independent models for each task,
we propose constituting W¥ as follows:

Wi=WIAWS st AL =diag(\Y) (1)
where W! € R/*F and Wf; € RFXM are global param-
eters shared across tasks and Af € RY is a task-specific
vector. The determination of F' is explained in Section
[2:2] but in general F is chosen such that after T tasks,
the total number of parameters of this factorized model
is (J+T + M) - F, which is significantly less than the
J - M - T parameters that would result from learning
each task independently. We may equivalently express
as the weighted sum of rank-1 matrices formed from
the outer product of the vectors corresponding to the
columns W and rows of W¥:

F
Wi = Z Af,k (Wik ® Wlt;,k) (2)
k=1

where ® denotes the outer product, and the pair Wi &

and Wf’ . is the k' column and row of W and W,
respectively. Under this construction, the pairs of
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corresponding columns of W and rows of Wf; can be
interpreted as a dictionary of weight factors, while the
values in Af are the factor scores for a particular task
(see Figure [l). By sharing these global weight factors,
the model can reuse features and transfer knowledge
between tasks, with A selecting and weighting the
factors for a particular task t. We construct the factor
scores Af as the following element-wise product:

)\f = rf ® bf (3)

where bf € {0,1} indicates the active factors for
task ¢t and rf € R specifies the corresponding factor
strength. By imposing sparsity with bf , we concentrate
skills for each task into specific factors, leaving room
for learning other tasks with other factors.

Generalizing to convolutional kernels While
learning the weight factors in was formulated for
fully connected layers, it can be generalized to other
types of layers as well, including 2D convolutional lay-
ers. Unlike the 2D weight matrices comprising the
fully connected layers of a MLP, convolutional kernels
are 4D: in addition to number of input and output
channels (C;, and C,,:), they also have two spatial
dimensions denoting the height (H) and width (W)
of the convolutional filter. While learning 4D tensor
factors is certainly possible, in practice H and W tend
to be small (e.g. H =W = 3), so we instead choose
to reshape the kernel (RH*WxCinxCout) into a 2D ma-
trix (RHWCin)xCout)  We then proceed with the same
weight factor learning as in .

2.2 Indian Buffet Process for Weight Factors

Critical to the proposed layer-wise weight factors is
the number of factors F: too few and the model lacks
sufficient expressivity to model every task; too many
and the model consumes more memory and computa-
tion than necessary. To further complicate matters,
the number of necessary factors likely increases mono-
tonically as the model encounters more tasks. While a
particular choice of F' may be appropriate for T tasks,
it may no longer be sufficient after T”, with TV > T.

Rather than setting it as a constant, we let F' grow
naturally with the number of tasks. There are a num-
ber of expansion strategies for continual learning that
have been proposed over the years (Rusu et al., [2016;
Hung et al. 2019; |Zhang et al., 2019; Lee et al.l 2020).
Many of these expand the model by a constant amount
per task, or rely on the model designer to specify a
schedule or heuristics for the size of the expansion.
These hand-tuned strategies can be brittle, and require
expert knowledge on the complexity of incoming tasks.
Additionally, prior works do not use weight factor dic-
tionaries, so expansion involves adding additional nodes

to each hidden layer or learning entirely new models,
which can increase test-time computation.

Instead, we employ Bayesian nonparametrics, inferring
in a principled manner the scores for the proposed rank-
1 weight factors for each task and the total number
of factors F' needed. In particular, we impose the
stick-breaking construction of the IBP (Ghahramani &
Griffiths| 2006]) as a prior for factor selection:

vf’i ~ Beta(a, 1) (4)
k

Wf,k = H Uf,i (5)
i=1

bf,k ~ Bernoulli(ﬂ'ﬁk) (6)

where « is a hyperparameter controlling the expected
number of nonzero factor scores, and k = 1,2,...F
indexes the factor. For the global parameters (W and
W) and the local factor strength (rf), we use point
estimates. See Appendix [A] for an overview of the
IBP and the connection of IBP-WF with IBP-based
dictionary learning. Leveraging the IBP in conjunction
with dictionary learning provides a number of natural
advantages within the context of continual learning:

Dynamic control of FF The IBP allows the number
of factors F' to be determined nonparametrically and
dynamically, growing only as necessary given the com-
plexity of each individual task. Simpler tasks (or ones
similar to previous tasks) may require learning fewer
new factors, while more complex ones lead to more, all
inferred automatically. While F' can theoretically grow
unbounded, it does so harmonically — much slower than
the requisite linear growth of the number of tasks.

Factor reuse and positive transfer Given that
continual learning is often deployed when tasks are at
least somewhat correlated, training independent mod-
els can lead to learning redundant features, which is
inefficient both in training data and test time compu-
tation. On the other hand, the construction of 7} (see
(b)) actively encourages reuse of existing weight factors,
prioritizing recycling previously learned skills for new
tasks over creating new ones, which leads to positive
forward transfer. This is in contrast to other methods
whose only source of transfer is initializing from the
previous task’s weights, whose transfer advantage may
be quickly wiped away by gradient descent.

Catastrophic forgetting mitigation The newly
learned weight factors in W, and W}, are frozen at the
end of a task. This mirrors the freezing of previously
learned weights in existing expansion methods. By
blocking the gradients to weights learned from previous
tasks, we avoid forgetting the model’s ability to perform
older tasks. Note that while factors learned from a
previous task are frozen, the factor scores may change
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with each incoming task allowing the model to control
the usage of a previously trained factor.

Constant inference time cost At test time, IBP
weight factors (outer product of each column of W
and row of Wﬁ) can be pre-computed; given a task,
the appropriate factors can be retrieved, weighted, and
summed as needed to retrieve {W¢}L . TImposing
the IBP prior on the usage of factors induces a prior
distribution of Poisson(a)) on the number of active
factors. Thus, the number of nonzero factors have a
prior expectation of «, regardless of the number of
tasks T, so the expected forward computation of the
model does not grow with 7. This avoids one of the
pitfalls of other expansion methods (e.g., Rusu et al.
(2016); [Lee et al.| (2020); Kumar et al.| (2019))), whose
inference-time computation scale with 7.

2.3 Variational Inference

To determine which factors should be active for task t,
we perform variational inference to infer the posterior of
parameters 0, = {bf,vi}l_ . We assume the following
variational distributions:

a(69) = a(b})a(v}) (@)
bf ~ Bernoulli(ﬂ'f) (8)
vf ~ Kumaraswamy(cf, df) 9)

We learn the variational parameters {mf,c{, df}Z |
with Bayes by Backprop (Blundell et al.| |2015). As
the Beta distribution lacks a differentiable parame-
terization, we use the similar Kumaraswamy distri-
bution (Kumaraswamy, 1980) as the variational dis-
tribution for vi. We also use a soft relaxation of the
Bernoulli distribution (Maddison et al.,2017) in (6]) and
to allow backpropagation through discrete random
variables. The objective for each task is to maximize
the following variational lower bound:

Ny

o= Eqlogp (5" 60, 0f", Wa, Wi,
n=1 (10)
— KL (g (6¢) [lp (6:))

i

where Ny is the number of training examples in task
t, Wa = {qu}ézlv W, = {Wll;}él:l and r; = {rf}él:l'
The variational lower bound in is maximized with
respect to task-specific parameters (6;,v;) and global
parameters (W,, Wy,). Note that in the first term
provides label supervision and the second term (%)
regularizes the posterior not to stray too far from the
IBP prior. We use a mean-field approximation, allowing
expansion of the second term as follows:

L
% =y _ KL (a(b)|lp(bf|vi)) + KL (a(v))llp(v))

=1
(11)

Variational continual learning (VCL) (Nguyen et al.,
2018|) addresses catastrophic forgetting using online
inference, i.e., the posterior inferred from the most
recent task is used as a prior for the incoming task.
However, recent work (Farquhar & Gal, 2018} 2019)
suggests that approximate online inference often does
not succeed in mitigating catastrophic forgetting in
realistic continual learning settings, as methods based
solely on approximate inference rely on a simple prior
to capture everything learned on all previous tasks.
Thus, instead of performing online inference for all
parameters {r{, bf, v/}, we only apply online inference
for v{ and learn task-specific parameters {rf, b¢}. Note
that online inference over v/ encourages the reuse of
factors from previous tasks while having task-specific
parameters allows the model to easily adapt to a new
task by using new factors. For the second term in
(11)), we derive an analytic approximation of Kullback-
Leibler (KL) divergence between two Kumaraswamy
distributions. The derivation and more details on doing
online inference with and are included in
Appendices [B] and [C]

Preserving knowledge If all of W/ and Wf; were
free to move without constraint, then catastrophic for-
getting may still occur. Indeed, the model could “reuse”
a factor from a previous task and then repurpose it
entirely, undermining the ability to do the former task.
To prevent this, the weight factors (i.e., the columns of
W and rows of W§) with factor probability 7rf7k > K
are locked (e.g., with a stop gradient operator) at the
conclusion of a task. Weight factors below the threshold
k are left free to be modified by future tasks. Through-
out our experiments, we set the threshold as x = 0.5,
but this can be adjusted based on tolerance for forget-
ting. We include an ablation study on selecting  in
the Appendix Alternatively, other regularization
methods (e.g., Kirkpatrick et al.|(2017))) can be used
to prevent important factors from drifting too far, but
we leave this combination to future work.

2.4 Task Inference at Test Time

IBP-WF addresses catastrophic forgetting and allows
for positive knowledge transfer. However, as with many
continual learning methods, IBP-WF requires the task
identity associated with each input at test time in
order to select the proper {Af}Z . The validity of this
assumption has occasionally been questioned (Farquhar
& Gal, 2018} |Aljundi et al.l |2019; [Lee et al., 2020). We
outline here a mechanism for enabling IBP-WF to
operate in an incremental class setting, inferring the
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task identity at test time. Given a data point x, we
can infer the task identity by defining the probability
of = belonging to a particular task ¢ as follows:

P(t|z) o< P(z|t)P(t) (12)
However, using requires learning a generative
model P(z|t) Vt € {1,2,...,T}, which can be expensive
in both computation and the number of parameters.
To alleviate this issue, we propose a simple yet effective
alternative: we define an approximation to P(z|t) by
using the feature distribution induced by an interme-
diate hidden layer of the trained neural network. In
particular, we approximate by using P(t|¢(z)) as
a surrogate for P(t|z):

N __ P=)t)P(t)

Pl = PUO) = 5= "po(a) 1) P@)
where ¢ is an intermediate layer defined using the
proposed weight factorization as shown in with
task-specific weights of the first task. We work with
the feature space induced by the parameters of the first
task as they are accessible by the training data of all
tasks that follow. Next, we assume P(¢(z)|t) to be
a Gaussian distribution: P(¢(z)[t) = N (d(x)|pe, X¢),
where the parameters are the empirical estimates using
the training data.

(13)

1 n
o=, Z¢<x§ M,
So= 1 D (0(al™) — ) (6() — )"
t n=1

where xin) is a training sample from task ¢. When we

train our model on task ¢ > 1, we use the task-specific
weights learned for the first task to compute {ge;, 3¢ }.
The parameters {u:, X¢} are stored to infer test-time
task identity. While the features may not be exactly
Gaussian distributed, this assumption has been shown
to work well in deep learning (Heusel et al.l [2017}
2018)), and we find it effective in practice; see
Appendix [D-2] for task inference accuracy experiments
and t-SNE visualizations of ¢. Notably, we achieve
similar accuracy to generative model task inference

2020)), with a far cheaper method.

Considering the marginal task distribution P(t) o< IV,
the task identity can be inferred as follows:

log |3
52 tog ()

t = arg min
t

where { is the inferred task and I is the identity matrix.
While such a strategy does require storing statistics
i1y and f)t, the total size of these is still considerably
smaller than parameter statistics required by certain
regularization methods (e.g., EWC (Kirkpatrick et al.|
2017))), as well as the coresets or generative models used
by replay methods (Nguyen et al) 2018} [Shin et al.
[2017; jvan de Ven & Tolias), 2018)).

Remark: (Informal) The approximation in is
exact if ¢ is an invertible map since P(s|t) = M x P(z|t)
with M = ’det%‘ when s = ¢(x). See Appendix
[D7] for a formal proof.

3 Related Works

There have been a number of diverse continual learning
methods that have been proposed in recent years, most
of which can be roughly grouped by strategy into a few
categories, with some overlap. Regularization-based
approaches (Kirkpatrick et al. 2017} |Zenke et al., [2017
Li & Hoieml, 2017} [Nguyen et al. 2018} [Aljundi et al.
2018} [Schwarz et al) [2018; Ritter et all [2018) add
a loss term constraining the network parameters to
remain close to solutions of previously learned tasks.
Others use replay (Kirkpatrick et al.l 2017} |[Lopez-Paz|
& Ranzato|, 2017} [Shin et all 2017; [Nguyen et al.
2018; [Rolnick et all 2019), which retrains the model
on samples from earlier tasks, either from a saved core
set or with a generative model that must be learned.

Another class of continual learning methods rely on
expansion, the approach taken by IBP-WF. Progressive
Neural Networks (Rusu et all [2016)) learn a new neu-
ral network column for each new task, with previous
columns’ features as additional inputs. While avoiding
catastrophic forgetting by design, both memory and
computation grow linearly with the number of tasks
T, just as if one were to learn independent models per
task. Side-tuning (Zhang et al., 2019)) learns a sepa-
rate “side” network for each task, adding the output
to a shared base model; while this experiences linear
growth T of the model size, it reduces the cost by
keeping each side network small. As an alternative to
constant growth, Reinforced Continual Learning (Xu &
Zhu, uses an LSTM (Hochreiter & Schmidhuber,
@ controller and REINFORCE (Williams, |1992)
to determine the expansion rate, while Dynamically
Expandable Networks (Yoon et al [2018) expand by a
constant amount before using sparsity regularization
and loss-based heuristics to prune away unused units.
Pruning between tasks is also utilized by
7 where the pruning and re-training is used to
prevent excessive growth of the model. MNDPT

2021)) adds new modules to the model with

new tasks, reusing modules of older similar tasks.
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Table 1: The average accuracy of seen tasks after learning on a sequence of tasks using a MLP.

Method Replay Split MNIST Permuted MNIST
Incremental Task Incremental Class Incremental Task Incremental Class

Adagrad 98.24 4+ 0.59 19.73 + 0.12 90.78 £ 0.18 27.59 £+ 1.07
EWC 98.64 £ 0.87 19.89 + 0.04 92.49 + 0.34 23.97 £+ 3.21
SI 99.16 £ 0.52 19.71 £ 0.10 95.45 £ 0.59 56.88 £ 4.93
MAS 99.23 £+ 0.18 19.58 + 0.11 96.76 £+ 0.26 49.95 4+ 2.53
LwF 99.61 &+ 0.05 22.31 £ 0.51 81.47 £+ 0.38 30.63 £+ 0.76
VCL 96.79 £+ 0.35 19.43 4+ 0.02 91.33 = 0.93 16.21 + 0.59
Naive rehearsal v 99.39 £+ 0.11 85.97 £ 0.75 96.75 £+ 0.19 96.53 £+ 0.11
VCL-Coreset v 98.75 4+ 0.06 85.15 £ 0.61 93.46 £ 0.49 66.96 & 4.10
GEM v 98.56 &+ 0.08 88.28 £+ 0.26 97.14 £+ 0.09 96.88 &+ 0.05
DGR v 99.54 £+ 0.05 91.61 £+ 0.26 93.74 £+ 0.24 92.96 &+ 0.53
RtF v 99.66 £ 0.03 92.56 + 0.21 97.31 £ 0.01 96.23 £+ 0.04
IBP-WF (Ours) 99.69 + 0.05 92.40 + 0.15 97.52 + 0.06 97.50 + 0.06

A few works have also explored continual learning from
a Bayesian nonparametric perspective. |Lee et al.| (2020)
combine the Dirichlet process with a mixture of experts,
where each expert is a neural network responsible for a
subset of the data. While this approach does allow the
data to dictate model expansion, mixing only occurs at
the prediction representation, as opposed to throughout
the model as in IBP-WF. This mixture of experts thus
can lead to redundant feature learning and unnecessary
extra computation. Recently, there have been other
attempts to apply IBP to learn the structure of a
neural network for continual learning. [Kumar et al.
(2019) proposed Bayesian Structure Adaptation for
Continual Learning (BSCL), which expands the hidden
units in each layer using a binary mask for the weight
filters, with an IBP as the prior of the mask. Since
BSCL uses an IBP over the entire weight matrix, the
inference parameters grow quadratically with the layer
size requiring more memory and making it hard to
scale to large networks, whereas we use the IBP to
model the factor scores where the inference parameters
only grow linearly with the layer size. IBP Bayesian
Neural Networks (IBNN) (Kessler et al.l 2020) have
used sequential Bayes to apply IBP to the hidden layer
activations of a fully connected neural network. In
contrast, we expand the number of factors of the weight
matrix in each layer, allowing us to scale our method
to deeper networks with convolutional layers.

4 Experiments

We evaluate our method in two settings, which we
call incremental task learning and incremental class
learning. In incremental task learning, the task iden-
tity (ID) of each sample is revealed at test time. In

this case, we can simply use the A; from the task ID
given. On the other hand, in incremental class learning,
we are not given task IDs during testing. This is the
more difficult case, with many earlier continual learning
methods tending to do poorly. We address this chal-
lenge by using the approach described in Section [2.4
inferring the task identity by using the training statis-
tics at an intermediate layer. For task inference in
our incremental-class experiments, we consider ¢ in
to be the representation after the first layer, as it
performed best. We purposely have chosen to not sup-
plement IBP-WF with replay, to isolate the advantages
of using IBP and weight factors. This puts IBP-WF
at a disadvantage compared to replay-based methods.
Nevertheless, IBP-WF outperforms or is comparable
to replay-based methods. Note that with replay (where
we no longer freeze the IBP “dishes” after they are
learned by a given task), the IBP-WF performance is
likely to improve further (via backward transfer); we
reserve that for future work.

We additionally perform an ablation study over the
effect of the IBP, and then visualize some IBP-WF
weight factors to verify some of its behavior. The
description of baselines and the training details are in
Appendices [F] and [G] respectively. Ablation studies for
IBP-WF’s « and « are also included in Appendices [L.]
and All experiments are run on a NVIDIA Titan
X GPU.

4.1 Datasets and Architectures

We evaluate IBP-WF on a number of common continual
learning benchmarks. For each, the model is trained
on a series of classification tasks arriving in sequence.
This is done without revisiting the data from previous
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Figure 2: Uncertainty in the incremental class setting for Split MNIST dataset. Each plot depicts the uncertainty
on the test sets after training on each task sequentially. The y-axis denotes the uncertainty (as the predictive

entropy in nats), and z-axis denotes the test sets (77 through 75) for each task.
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Figure 3: Parameter usage (left) and Average accuracy (right) for IBP-WF and Const-WF. We see that IBP-WF
performs favorably by learning the required number of factors for each task in contrast to Const-WF.

tasks, unless otherwise stated (e.g., some baselines use
a memory buffer for replay to relax this constraint).
The standard train/validation/test splits were used.

Split MNIST Following |Zenke et al.| (2017)), the 10
digit classes of the MNIST (LeCun et al.,[1998) dataset
are split into a series of 5 binary classification tasks:
Ovs1l, 2vs 3, 4vsbH 6vs 7, and 8 vs 9. In the
incremental task setting, where the task ID is given,
this reduces to a binary classification problem during
testing. In the incremental class setting, without task
labels, each model must predict one of 2t classes, up
to a maximum of 10 once all tasks have been seen.

Permuted MINIST First used to characterize catas-

trophic forgetting in neural networks by
(2013)), Permuted MNIST has remained a common

continual learning benchmark. The first classification
task is typically chosen to be the MNIST dataset, un-
changed. Each subsequent task consists of the same
10-way digit classification, but with the pixels of the
entire MNIST dataset randomly permuted in a con-
sistent manner. An arbitrary number of tasks can be
generated in this manner; for our experiments, we use
10 tasks. In the incremental-task setting, test-time
evaluation is a 10-way classification problem, while in
incremental class learning we have up to 100 classes.

Results are shown in Table [l In addition to these
results, we also compare against additional baselines in
Appendix [F] IBP-WF outperforms other methods in

most cases and is inferior only to replay-based methods
in one setting. Unlike replay-based methods though,
IBP-WF does not require saving data examples or sep-
arately learning bulky generative models. Compared
with non-replay methods, we see significant improve-
ment, especially in the incremental class setting. Addi-
tionally, due to the Bayesian nature of IBP-WF, one
can quantify the predictive uncertainty, which is a
desirable property of a model, especially in decision
making. Uncertainty estimates can also be used to
detect out-of-distribution samples and ad-
versarial attacks (Smith & Gal,[2018). We demonstrate
the former in Figure [2] where data from unseen tasks
can be identified by the model’s significantly higher
uncertainty. See Appendix [E] for additional details on
uncertainty estimation methodology.

Split CIFAR10 We split the CIFAR10 (Krizhevsky|
2009) dataset into a sequence of 5 binary classification

tasks (see Figure [5| for the class pairings). Similar to
Split MNIST, this is a binary classification problem at
test time in the incremental task setting, and 2¢t-wise
classification in the incremental class setting.

State-of-the-art classification performance on CIFAR10
is typically achieved with convolutional neural net-
works. We demonstrate that IBP-WF can scale by
using ResNet-20 as our architecture,
with separate batch normalization layers for each task.
For task inference at test time, we take the average
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Figure 4: (Horizontal axis: Weight factors in the dictionary, vertical axis: Factor scores for 5 tasks in Split
CIFARI10). High overlap in earlier factor scores indicate that tasks reuse factors that were learned by previously
seen tasks. The IBP prior encourages the reuse of previously learned factors, while inducing sparsity on the total

number of active factors.

Table 2: The average accuracy of all seen tasks after
learning the task sequence.

Method Replay Split CIFAR10
Incremental Task Incremental Class

Adagrad 71.56 £ 1.73 19.59 + 0.02
Lo 74.36 £+ 0.83 16.86 + 0.08
EWC 75.91 £+ 1.64 18.84 + 0.06
Online EWC 88.34 £+ 1.06 17.54 + 0.34
ST 87.19 £ 2.06 19.06 + 0.09
MAS 85.68 £ 1.36 16.29 + 0.14
Naive rehearsal v 87.79 £+ 0.88 34.24 + 1.38
IBP-WF (Ours) 90.94 + 2.65 40.40 + 0.21

across spatial dimensions H and W to get the fea-
ture statistics ¢ and then proceed with the parameter
estimation procedure introduced in . We keep a
buffer of 400 images from previous tasks for the naive
rehearsal baseline. Table [2 shows the results on Split
CIFAR10. We again see that IBP-WF performs well
relative to the baseline methods.

4.2 IBP Ablation Study

To demonstrate the benefits of the IBP prior, we per-
form an ablation study comparing IBP-WF with a
variant without the IBP for weight factor selection and
expansion, in which factor usage and model growth
must be manually set. As the expansion rate is con-
stant, we call this Const-WF (v, w), parameterized by
the starting number of factors (v) in the first task and
number of new factors (w) added per task. We com-
pare IBP-WF with Const-WF for several corresponding
settings in Figure 3] Importantly, the IBP allows for
automatic expansion as needed, with sublinear har-
monic parameter growth, without human intervention.
IBP-WF’s factor reuse also results in positive transfer,
yielding better accuracy, despite having fewer parame-
ters than Const-WF.

4.3 Visualizations

Weight factor utilization Central to our method is
the IBP prior that controls the growth of the number of
factors and encourages the model to reuse factors. This
controlled growth makes IBP-WF more efficient than
independent models, while the reuse allows for positive
knowledge transfer between tasks. The factor usage
is visualized by plotting the expected factor scores
E [A\;] for the first layer of a model trained on the Split
CIFAR10 in Figure [l One can clearly see the impact
of using the IBP as regularization: early factors are
prioritized in earlier tasks, and new factors are used
with later tasks. We emphasize that the number of
new parameters is not defined directly by some preset
schedule, but rather is inferred from the data.

The sparsity induced by the IBP can also be seen. With
each new task, an increasing number of factor scores
have nonzero entries, as the model adapts the number
of factors F based on the task objective. However, even
for a later task, the probability of a factor being active
remains high for only a few. As a result, each draw
from the posterior tends to be sparse, regularized by the
IBP to have « active factors in expectation. Another
appealing aspect of using an IBP is that the rate of
allocating a new factor decreases with tasks. Finally,
following the “rich-get-richer” principle (here for “rich”,
or widely utilized, factors), the IBP encourages that
factors are reused based on the total number of prior
tasks using it.

CIFARI1O filters We also visualize the first layer
convolutional representations for a model trained with
IBP-WF on Split CIFAR10 (Figure[5). We observe an
interesting property of the model: the feature maps in
earlier tasks are similar compared to the diverse feature
maps for later tasks. This can be attributed to early
tasks using few factors due to the regularizing effect
induced by the IBP on the rank of the weight filter.
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Task 1
Airplane vs Car

Task 2
Bird vs Car

Task 3
Deer vs Dog

Task 4
Frog vs Horse

Task 5
Ship vs Truck

Figure 5: The first layer representations for each class in a trained IBP-WF ResNet-20. Each 4 x 4 grid shows
the feature representations after convolution using 16 kernels in the first layer.

However, as the model observes more data, the filters
become more diverse since the number of active factors
increase, resulting in varied features maps. This shows
that as the model sees more tasks, the complexity of
the layer increases through the newly invoked filters.

5 Conclusions

An expansion-based approach combining a dictionary
of weight factors with the IBP has been introduced,
which we call IBP-WF. This synergy provides impor-
tant characteristics within the context of continual
learning, including knowledge reuse across tasks, data-
driven model expansion, and catastrophic-forgetting
mitigation. We also propose a simple and efficient task-
inference scheme, utilizing feature statistics for each
task and enabling operation in incremental class set-
tings. A number of experiments on common continual-
learning benchmarks show the effectiveness of IBP-WF.
Ablation studies demonstrate the effectiveness of the
IBP over linear expansion, and visualizations of the
inferred factor scores and weights illustrate the regular-
ization effects of our method. Notably, the motivation
of IBP-WF is orthogonal to a number of other contin-
ual learning strategies, and combining some of these
with IBP-WF is a promising direction for future work.
For example, IBP-WF can readily be augmented with
replay, and the Dirichlet process mixture model (as in
) may be a natural Bayesian nonpara-
metric alternative to our feature statistic method for
inferring tasks.
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Supplementary Material

A Review of Indian Buffet Process (IBP) and its connection to IBP-WF

Indian Buffet Process The Indian Buffet Process (IBP) is a stochastic process defining a probability distribution
over a binary matrix (Z) with finite rows (T') and an unbounded number of columns (K — o0). The binary matrix
can be interpreted as an assignment matrix, with the rows representing a finite number of objects (sometimes
referred to as the “customers”) and the columns representing an unbounded number of features (referred to as the
“dishes”), where z;; = 1 if an object i has the k*" feature or otherwise z;, = 0. Consider z;z|up ~ Bernoulli(uy),
where pup ~ Beta($,1) is the prior probability that the feature & is active and « is the strength parameter. If we
marginalize u; and take the limit K — oo, we get the IBP. The IBP is often described using a culinary metaphor:
supposing that there is a restaurant that serves a buffet with infinitely many dishes, then we can describe the
IBP as follows:

e The first customer enters the restaurant and takes a serving from Poisson(a) dishes.

e Each t*™ customer that follows moves along the buffet sampling dishes based on their popularity; the customer
takes a serving of the k" dish with the probability 7k, where my is the number of customers who have

previously taken dish k. The customer then tries Poisson(¢) number of new dishes.

A sample from the above process can be summarized with the binary matrix Z, where z;; represents whether the
it? customer took a serving from dish k or not. For an in-depth view, we refer the reader to the comprehensive
review by |(Ghahramani & Griffiths| (2006).

Key properties of IBP: (1) The total number of dishes chosen can grow arbitrarily. (2) The likelihood of
adding new dishes is given by Poisson(¢). Thus, as ¢ increases, the tendency to add new dishes decreases. (3) As
the number of customers increase, the tendency of a new customer to reuse previously served dishes increases.

Stick-breaking Construction for IBP (Teh et al|(2007) proposed an alternative representation for the IBP
where the feature probabilities (uy) are not integrated. Let the ordered sequence of {pux}< | be w1 > w0 > ... > 7k
such that 7y = p, where 1 < {k,1} < K. We can construct {m;}X_; as follows:

k
up, i Beta(a, 1) T = H vy (16)
j=1

In the limit K — oo, the above is referred to as the stick-breaking construction of IBP. The stick-breaking
construction and the standard IBP representation are different representations of the same nonparametric object
(see Section 3 in (Teh et al.| (2007)) for the proof). In practice, we use a truncated version of the stick-breaking
process, where a large enough K is chosen.

Connection with the proposed IBP-WF for continual learning Recall the filter construction in the
proposed weight factor dictionary learning:

F
Wy = Z At (Wa ke @ Wy k) 5 At =r1;Oby (17)

k=1
where F represents the number of active factors, ¢t represents the task and k represents the row and column of the
corresponding W, and W}, matrices. For brevity, here we suppress the superscript ¢ from equation denoting
the layer. The binary vector b; is generated using the stick-breaking construction of IBP. Following the same
culinary metaphor as in the standard IBP, the weight factor (wg.x @ wp i) and the task ¢ are analogous to the
“dish” and “customer” respectively. Central to our setup is the growth of F' as the model encounters new tasks;
IBP-WF inherits the properties of IBP described above: as more tasks are seen, the rate of adding new weight

factors decreases while the likelihood of reusing previously learned factors simultaneously increases.
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B Kullback-Leibler (KL) Divergence Derivation

Nalisnick & Smyth| (2016) gave an approximate form for the KL divergence between Kumaraswamy and Beta
distributions. We apply online variational inference for v, which requires the KL divergence between two
Kumaraswamy distributions (See online inference for vf in Appendix [C]). Here we derive the analytical form to
approximate the KL divergence between two Kumaraswamy distributions ¢ and p.

KL (0 (0.0 I (0 5) = By, [fog 22221 (18)
where g, (a,b) = abv® 1 (1 — o)™ and p, (o, 8) = afo*~t (1 —v*)? 71,

KL (qv (a7 b) ||pv (O‘v ﬁ)) :Eqv [10g Qv (av b)] - ]EQv [logpu (av B)]

(19)
71 T2
where the first term is the Kumaraswamy entropy (Michalowicz et al.l [2013):
-1 1 b—1
91z10gab+6l61<—'y—\11(b)—b)—b (20)

where 7 is Euler’s constant and W is the Digamma function. For the second term, we write the expectation as:

72 =E,, log (aﬁua* (1- Ua)ﬁ—l) (21)
=E,, [logaf + (a—1)logv + (8 —1)log (1 — v*)]
=logaf + (a—1)E,, logv + (8 — 1) E,, log (1 — v®)

In the above equation, the expectation of the log term can be computed using |Gradshteyn & Ryzhik| (2007)
(4.253):

E,, logv = é (-w — () — 2) (22)

The third term involves taking the expectation of log (1 — v®) which can approximated with a Taylor series:

= 1
log (1 — —
og ( v mzz — (23)

Note that the infinite sum in (23]) converges since 0 < v < 1. From the monotone convergence theorem, we can
take the expectation inside the sum:

=1
Eq, [log(1 —v%)] == ) —Eq 0™
2 [10g v mzz:lm 2wV
= b mao
:-n;mB(a+1,b) (24)
> ab mao
:_Tnz_:lma—l—abB(a’b)

where B(.,.) is the beta function and bB (2 + 1,b) is the (m a)™ moment of the Kumaraswamy distribution
with parameters a and b. As the low-order moments dominate the infinite sum, we only use the first 10 terms to

approximate in our experiments. Using and we have:

b b— — > ab(f—
KL (0 (6B I (o 3) =log 25 = =+ 22 (v = 3 )+ S 00D p ("00) 2
m=1
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C Inference

Recall that to determine which factors should be active for a particular task ¢, we perform variational inference
to infer the posterior of parameters 6; = {bf,vi}L_,. The following variational distributions were used:

a(9;) = a(by)a(vi) (26)
b! ~ Bernoulli(r?) (27)
vl ~ Kumar(ct,d?) (28)

The objective for each task is to maximize the variational bound:

Ny
£ =Y Eylogp (5"|6n, 2", Wa, Wi 1) = KL (g (60) I (6.)) (29)
n=1

where N; is the number of training examples in task t. We use the mean-field approximation, so the second term
can be expressed as

KL (¢(00)llp (82)) =KL (a(b)llp(bg|vy)) + KL (a(vi)llp(vi)) (30)

VCL (Nguyen et al.} |2018) addresses catastrophic forgetting using online inference, i.e., the posterior inferred
from the most recent task is used as a prior for the incoming task. However, more recent work (Farquhar & Gal,
2018 [2019) suggests that online inference often does not succeed in mitigating catastrophic forgetting in realistic
continual learning settings, as methods based solely on online inference rely on the prior capturing everything
learned on all previous tasks. Thus in , instead of performing online inference for {bf,v¢}, we only apply
online inference for vf, while learning task-specific parameters {rf, b¢}.

Inference for vi{: Starting with the first task (¢t = 1), we initialize the prior p(v%) = Beta(c, 1) and learn the
posterior ¢(v{) = Kumar(c!, d{) using Bayes by Backprop (Blundell et al. 2015). Note that Beta(c, 1) has the
same density function as Kumar(a, 1). For all the following tasks, the prior p(vf) = ¢(v¢{_;) and the posterior
q(v) = Kumar(c{, d?) is learned in the same way as in task 1. Note that we use mean-field approximation for
the posterior: ¢(v{ ;) = Kumar(c{,,df ;). We use to compute the KL divergence between the posterior and

the prior in .

Inference for b!: We use the BernoulliConcretey, distribution (Maddison et al., 2017) as the soft approximation
of the Bernoulli distribution for both the prior and the posterior. We fix A = 2/3 for all our experiments. We
employ the prior p(by ;) = BernoulliConcrete, (f ), where 7, := [T.=hvi, and v}, ~ q(v{,). The posterior

is then q(beg) = BernoulliConcrete) (ﬁ'f"k), where ﬁf,k is learned using Bayes by Backprop. We use the the KL
divergence and reparameterization for the BernoulliConcretey as given by Maddison et al.| (2017)).

D Task Inference at Test Time

Recall from (13), we approximate P(t|z) with P(t|¢(z)), where:

_ PG@INPE)
P}~ = b o) P

In the following section, we show that under a certain assumption (namely Assumptionin, this approximation
is exact with P(¢t|z) = P(t|¢(x)). However, in practice this assumption may not hold without an explicit hard
constraint; hence we consider an approximation. Nevertheless, we feel it is important to show this connection.
In section we show empirical results on employing task inference as described in over commonly used
continual learning benchmarks.

= P(tl¢(z)) (31)

D.1 Proof

Let ¢ : X — S be the transformation function. We will assume ¢ is differentiable. For the transformation
¢ : X — S, and for a distribution P defined over X, let Py be the distribution induced by ¢ over S.
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Assumption 1 The transformation ¢ is a one-to-one function. Without loss of generality assume S to be the
image of X under ¢ with ¢ : S — X to be the inverse of ¢, such that ¥ (¢p(x)) = x.

Lemma 1 (Remark, main text). If Assumption[]] holds, then P(t|¢(z)) = P(t|z) Vo € X, t € {1,2,..T}.

Proof. Let My(s) = ‘detagil(s)

be the absolute of the determinant of the Jacobian of ¥ (s). Consider s = ¢(z)

and z = 9(s).

Py(t, s)
Pylt]s) = = (32)

i Py(s)
(a) P(t7 ¢(5)) M¢(S) (33)

P(ip(s)) My(s)

P(t, x)
= = P(t 4
B = Plle) (34)
where (a) follows from the change of variable formula. Note that My(s) can also be written as ‘det%(;) i )

is continuously differentiable (it is not however a requirement for Lemma |1]).

D.2 Quantitative Results for Task Inference and Visualizations

The procedure introduced in Section [2.4]is used for
identifying the task identity during evaluation when
it is otherwise unavailable. Thus, incremental class
performance is highly dependent on task inference
accuracy. We report the task inference accuracy in

Eeeu e e Wy

Table B . 'i'?@-..
Additionally, we visualize with a t-SNE plot the dis- :'"Ijgaiq.
tribution of the intermediate features ¢ from 10 tasks e :!gaé %ﬁ! e

of permuted MNIST in Figure[6] The features across

tasks are noticeably clustered, which allows our task

inference method to infer task identity from simple

feature statistics. While the accuracy for CIFAR10 & el

is much lower than for MNIST, this is partially at- Zﬁ,{‘fi@f@
i
2

%

tributable to the inherent challenge of sequentially s =
learned task inference for CIFAR10: CIFAR10 proves
challenging for the generative models commonly used

by replay methods for task inference as well. For ex-

ample, we find that learning a separate VAE (Kingma, Figure 6: The t-SNE plot for the intermediate features ¢
& Welling) |2013DE| for each task resulted in a task  ©f 10 tasks from the permuted MNIST benchmark.

inference accuracy of 41%. In general,
(2018)) showed that the density estimates from

generative models can lead to poor Out-of-Distribution detection. However, a comprehensive study is required for
further analysis. We leave further exploration of generative models for task inference for future work.

Table 3: The task inference accuracy using .

Split MNIST  Permuted MNIST CIFARI10
92.63 £ 0.12 99.98 + 0.01 43.62 + 0.16

!For VAE task inference, we used an encoder with layers 3(input)-32(conv)-64(conv)-128(fc), with a decoder that had a
deconvolution architecture symmetrical to the encoder. We used the ELBO to approximate P(z|t).
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E Uncertainty Estimation

A desired behaviour from a model is to return the uncertainty (or confidence) associated each prediction. Neural
networks are prone to have high confidence when the input lies outside of the training distribution. For such
inputs, we want our model to have high uncertainty (or low confidence) associated with the predictions. Unlike
neural networks trained as point-estimates (using MLE/MAP), Bayesian neural networks provide a natural
framework to estimate uncertainty associated with the prediction. We estimate the uncertainty in a continual
setting for both incremental task and incremental class settings. Note that non-Bayesian continual learning
methods do not have principled method to estimate uncertainty. Our estimate of uncertainty is based on the
predictive entropy defined as:

|k * * * *
H[y |5C 7Dt7‘ain] = - § (p(y :C|$U aDtrain) Ing(y :C|$ aDtrain)> (35)
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Figure 7: (Section [E.1)) Uncertainty in the incremental task setting for Split MNIST dataset. Each of the 5
plots depicts the uncertainxty of the test sets when task-specific parameter A; is used. The y-axis denotes the
uncertainty (as the predictive entropy), and z-axis denotes the test sets (7; through 7).
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Figure 8: (Section Uncertainty in the incremental class setting for Split MNIST dataset. We compute the
uncertainty of the test sets after training on each task in the sequence. The y-axis denotes the uncertainty (as
the predictive entropy), and z-axis denotes the test sets (77 through 75) for each task. Since we do not know the
task (and the corresponding A;), the predictive entropy is computed by marginalizing over all tasks. All the seen
classes have low uncertainty compared to unseen ones.

E.1 Incremental Task Learning:

Recall that in incremental task learning, we know the task identity at test time. Hence, we compute the
predictive distribution by doing a forward pass using the task-specific parameters in IBP-WF'; we can write
p(y* = c|z*) = p(y* = c|z*,t*), where t* is the associated task-identity with the input 2* during testing. Following
(2016)), we approximate the predictive distribution by using an ensemble of M neural networks sampled from
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the posterior distribution:

M
ply* =clt =t z" Z p(y* = c|x*;9t(:n)), where HET) ~ q(0¢+) (36)

m=1

M
pt,*,c

where 01 ...0M) are M samples drawn from ¢(6;-). Using this we can compute a biased estimat of the predictive
entropy as follows:

H [y*|z"] Zp = c|z*) log p(y* = clz*) (37)
=- Zp (y* = cla*, t*) log p(y* = c|z*,t") (38)

M 1 M
= - Z ( > ply" = cla;08) ) log ( > plyt = CIx*;Gt(in))> (39)

m=1 m=1

= Z Pt* IOgPt*,c (40)

Figure [7] shows the uncertainty estimates for the test sets in the Split MNIST dataset. We denote the test set for
a task t € {1...5} as T;. As it can be seen in Figure [7} given a task-identity ¢, the uncertainty for the test set
T: when used with parameters A; is significantly smaller compared to the uncertainty of test sets {7/ |t' # t}.
One application of computing uncertainties would be an out-of-distribution test in the continual learning setting.
However, we leave exploring such extensions for future work. We use M = 100 to compute the uncertainty.

E.2 Incremental Class Learning:
For the incremental class setting, we do not have access to the task-identity of a given test point. We use the task

inference mechanism from Section 2.4 in the main paper. To infer the predictive distribution, we marginalize over
the task-identities:

ply* = clz™) Zp =c,t =t'|x%) (41)

:Zpy =t =t 2")p(t =t'|z") (42)
B = P(p(z)|t")P(t')
2 = = P )

—Zpt/ P(t'|¢(x)) (44)

Hy"|*] Z((Zp P(t|( )m(Zpﬂ Pl >>>> (45)

We use to estimate the uncertainty in the incremental class continual setting for the Split MNIST dataset.
Figure [§] shows the uncertainty of test sets after training on each task. As shown, initially when the model is
trained on the first task, the uncertainty of 72-75 is higher than the uncertainty of 7;. As the training progresses,
the uncertainty of the corresponding task decreases while still maintaining a low estimate of the uncertainty of
the test sets for the previous tasks. This provides further evidence that our proposed method IBP-WF mitigates
catastrophic forgetting. We use M = 100 to compute the uncertainty.

2The estimate is biased since HJ[.] is a non-linear function. The bias will decrease as M increases.
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F Baselines

We compare IBP-WF with a number of other approaches outlined as follows:

Fine-tuning The model is trained by a stochastic gradient descent algorithm, seeing each task in sequence. At
the conclusion of each task, the “final” trained model for a task is used as the initialization for the next task.
This represents the naive approach to training on sequential task data, where catastrophic forgetting was first
recognized. We compare against models trained by vanilla stochastic gradient descent (SGD) with constant
learning rate, as well as by adaptive learning rate methods Adam (Kingma & Ba, [2014)) and Adagrad (Duchi
et al., |2011).

Regularization Methods Recognizing that training on a new task may result in a model’s parameters moving
away from an optimum for a previous task, a number of continual learning strategies attempt to constrain the
model parameters from drifting too far while learning a new task. A simple way to do so is to apply an Lo loss
on the model parameters’ distance from previous task solutions. EWC (Kirkpatrick et al., 2017)) refines this by
weighting the Lo by parameter importance, using the Fisher Information; Online EWC (Schwarz et al., [2018}
Liang et al., |2018b)) uses an online version that provides better scaling. SI (Zenke et all 2017) also weights the
L5 regularization by importance, with the importance weighting instead coming from the amount a parameter
contributed to reducing the loss over its trajectory. MAS (Aljundi et al. 2018) computes parameter importance
as well, but with respect to the model output rather than the loss. LwF (Li & Hoiem, [2017)) leverages knowledge
distillation (Hinton et al.l |2015) principles, using previous model outputs as additional training objectives. VCL
uses Bayesian neural networks, using the posterior of the previous task as the prior for the next. We also compare
against a recent expansion method called IBNN (Kessler et al., |2020) that uses IBP to adapt the structure of a
Bayesian neural network. The accuracy for IBNN is taken directly from [Kessler et al. (2020)E]

Replay Methods As catastrophic forgetting can be attributed to not seeing previous parts of the data distribution,
another class of methods employ experience replay: refreshing the model on old tasks while learning new ones.
Naive Rehearsal accomplishes this by keeping examples from old tasks in a buffer and assembling them into
“replay” minibatches. This runs the risk of overfitting the samples in the buffer, so GEM (Lopez-Paz & Ranzato|
2017)) proposes instead using these as inequality restraints: the model should not increase the loss on saved
samples. These saved samples can also used for re-training or fine-tuning the model, which VCL (Nguyen et al.|
2018|) does with its coresets. Regardless of how stored samples are used, however, in certain settings, data is
private (Ribli et al., |2018)) or classified (Liang et al., |2018a)), and keeping data may be considered as violating
continual learning criteria. As an alternative, DGR (Shin et al., |2017) and RtF (van de Ven & Tolias| [2018])
propose generative models (Goodfellow et al.l |2014) as a source of replay. Such approaches avoid carrying around
older data, but require learning (and storing) generative models for each task, which may need to be quite large
depending on the complexity of the dataset.

We use the codebase from (Hsu et al., [2018; [van de Ven & Tolias, 2019) as our continual learning “sandbox.” Best
efforts were made to keep the model capacity consistent in all methods for a fair comparison.

Table 4: The average accuracy of seen tasks after learning on a sequence of tasks using a MLP.

Method Split MNIST Permuted MNIST
Incremental Task Incremental Class Incremental Task Incremental Class

SGD 96.95 + 0.46 19.46 + 0.04 90.54 + 0.03 8.46 + 0.36
Adam 95.18 + 2.64 19.71 + 0.08 91.70 £+ 1.89 16.13 + 0.71
Lo 98.32 £ 0.73 22.52 + 1.08 94.01 + 0.27 16.43 £+ 0.63
Online EWC 99.09 + 0.12 19.77 + 0.04 93.62 + 0.25 42.40 £+ 2.68
IBNN 95.30 £ 2.00 85.50 £ 3.20 95.6% + 0.20 93.8% + 0.30
IBP-WF (Ours) 99.69 + 0.05 92.40 + 0.15 97.52 + 0.06 97.50 + 0.06

G Experiment Setup

We describe the experimental configuration used:

3The IBNN performance on permMNIST is based on only 5 tasks, whereas other methods in Table [4| use 10 tasks.
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G.1 Split MNIST

Following (Hsu et al., [2018), we use the standard train/test split, with 60K training images (6K images per digit)
and 10K test images (1K images per digit). Standard normalization of the images was the only preprocessing
done, without any data augmentation strategies used for any of the algorithms.

Baselines: All baseline methods use the same neural network architecture: a MLP with two hidden layers of
400 nodes each, followed by a softmax layer. For GEM and naive rehearsal, a buffer of 400 images were saved
to replay previous tasks. For DGR and RtF a 2-layer symmetric variational autoencoder(Kingma & Welling},
2013) was learned for each task. We used ReLU as the non-linearity in both the hidden layers. All the baseline
models, except VCL, RtF and HIBNN, were trained for 10 epochs per task with a mini-batch size of 128 with
Adam (Kingma & Bal, [2014) optimizer (81 = 0.9, 82 = 0.999, lr = 0.001) as the default unless explicitly stated.
VCL was trained for 50 epochs. The results for RtF were taken from the original paper by van de Ven & Tolias
(2018)), which was trained for 2000 steps with a batch size of 128. Note that RtF has twice the number of
parameters compared to IBP-WF. The results for HIBNN in table [4| were taken from |Kessler et al.|(2020), which
was trained for 200 epochs. For EWC online, EWC, SI, GEM and MAS, the regularization coefficient was set to
400, 100, 300, 0.5 and 1.0 respectively.

IBP-WEF: IBP-WF used the same neural architecture as the baselines, except there was only a single hidden
layer. The prior parameter for IBP was set to « = 100. The model is expanded for 10 epochs (using equation
in the main paper) with a learning rate of 0.001 and fine-tuned with a fixed number of factors for 5 epochs. A
mini-batch size of 32 was used. We used the stick-breaking construction for IBP, which was truncated at K = 400,
i.e. the total budget on the number of allowed factors was 400.

G.2 Permuted MNIST

We use the standard train/test split of the MNIST dataset. Each task consists of the same 10-way digit
classification, but with the pixels of the entire MNIST dataset randomly permuted in a consistent manner. We
generate 10 such tasks using 10 random permutations in our experiments.

Baselines: All the baseline methods use the same neural network architecture: a MLP with two hidden layers
of 1000 nodes each, followed by a softmax layer. We used ReLU as the non-linearity in both the hidden layers. For
GEM and naive rehearsal, a buffer 1.1K images were saved to replay previous tasks. For DGR and RtF a 2-layer
symmetric variational autoencoder was learned for each task. All the baseline models, except RtF and VCL, were
trained for 15 epochs per task with a mini-batch size of 128 with Adam optimizer (5, = 0.9, 52 = 0.999,lr = 0.001)
as the default unless explicitly stated. For VCL, the model was trained for 100 epochs. The results for RtF were
taken from [van de Ven & Tolias| (2018), which was trained for 5000 iterations. For EWC online, EWC, SI, GEM
and MAS, the regularization coefficient was set to 500, 500, 1.0, 0.5 and 0.01 respectively.

IBP-WF IBP-WF used the same neural architecture as the baselines. The prior parameter was set to o = 700.
We train for 15 epochs for each task using IBP (using equation in the main paper) with a mini-batch size of
64. The model was then fine-tuned for 5 epochs with a fixed number of factors. The stick-breaking process for
IBP was truncated at K = 1000 for both the hidden layers.

G.3 CIFARI10

We split the CIFAR10 (Krizhevsky, 2009) dataset into a sequence of 5 binary classification tasks. Similar to
Split MNIST, this is a binary classification problem at test time in the incremental task setting, and 10-way
classification in the incremental class setting.

Baselines: We use ResNet-20 (He et al., 2016) for all the baselines. We used standard data augmentation
methods (random crop, horizontal flips and standard normalization) while training. All the baselines models
were trained for 160 epochs per task with a mini-batch size of 128. A learning rate of Ir = 0.001 was used. For
naive rehearsal, a buffer of 400 images were saved to replay previous tasks. For EWC online, EWC, and SI, the
regularization coefficient was set to 3000, 100 and 2 respectively.
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IBP-WEF: We scale our IBP-WF method to ResNet-20 by factorizing convolutional layers. The training was
carried out for 160 epochs with a learning rate of Ir = 0.001 and a mini-batch size of 128. There was no fine-tuning
done for this experiment. The truncation parameters for the stick-breaking process was set to 200 for all the layers.
We used task-specific batch normalization parameters for our implementation. We set the IBP hyperparameter «
to be 40 for all the convolutional layers and 32 for the final fully-connected layer.

H Ablation Studies

H.1 Selecting «

The hyperparameter o controls the behavior of the Indian Buffet Process prior, which for IBP-WF provides a
regularization effect for both the number of active (nonzero) factors per task, as well as the expected rate at
which new factors are added (expansion). Specifically, o is the prior’s expected number of factors per task, and as
such should be a value on the order of (but preferably less than) the rank of the weight matrix. We sweep a and
plot overall final performance of IBP-WF on Split MNIST and Permuted MNIST in both incremental class and
incremental task settings in Figure [J] We observe that excessively low values of « lead to poorer performance, as
there are not enough factors to learn each task, but otherwise IBP-WF exhibits low sensitivity to a over a very
wide range of values, showing relative robustness to «.
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Figure 9: Ablation study on «.

H.2 Selecting

IBP-WF preserves past knowledge by selectively freezing weight factors that played a key role in previous tasks.
We define this criterion as factors whose probability Wf’ i exceed a threshold . As with «, we sweep x and plot
IBP-WF’s performance on Split MNIST and Permuted MNIST in both incremental class and incremental task
settings in Figure We observe a decline in performance if & is set too high for incremental class learning in
Split MNIST, as it likely leads to not enough factors being preserved, but overall there is a wide range of settings
of k that give good performance.
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Figure 10: Ablation study on k. We use x = 0.5 for all experiments in the main text.
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