
Sylph: A Hypernetwork Framework
for Incremental Few-shot Object Detection

Li Yin Juan M Perez-Rua Kevin J Liang
Meta AI

{liyin, jmpr, kevinjliang} @fb.com

Abstract

We study the challenging incremental few-shot object de-
tection (iFSD) setting. Recently, hypernetwork-based ap-
proaches have been studied in the context of continuous
and finetune-free iFSD with limited success. We take a
closer look at important design choices of such methods,
leading to several key improvements and resulting in a
more accurate and flexible framework, which we call Sylph.
In particular, we demonstrate the effectiveness of decou-
pling object classification from localization by leveraging
a base detector that is pretrained for class-agnostic local-
ization on large-scale dataset. Contrary to what previous
results have suggested, we show that with a carefully de-
signed class-conditional hypernetwork, finetune-free iFSD
can be highly effective, especially when a large number of
base categories with abundant data are available for meta-
training, almost approaching alternatives that undergo test-
time-training. This result is even more significant consider-
ing its many practical advantages: (1) incrementally learn-
ing new classes in sequence without additional training, (2)
detecting both novel and seen classes in a single pass, and
(3) no forgetting of previously seen classes. We benchmark
our model on both COCO and LVIS, reporting as high as
17% AP on the long-tail rare classes on LVIS, indicating
the promise of hypernetwork-based iFSD.

1. Introduction
While advances in deep learning have led to significant

progress in computer vision [18, 23, 24, 31], much of this
success has relied upon large-scale data collection and an-
notation [7,20,22,36], a process that is both labor-intensive
and time-consuming, and does not scale well with the num-
ber of categories. This is especially true for object detec-
tion [18, 23, 37], particularly for the long tail of object cat-
egories, where data may be scarcer [22]. As a result, few-
shot learning of object detectors (FSD) [28, 65, 70, 72] has
become a recent topic of interest.

While learning a novel class from only a few samples

alone is a challenging problem, the task can be made sim-
pler by leveraging known classes with abundant data (com-
monly referred to as base classes), whose structure can
be used as a prior for knowledge transfer. The few pre-
vious FSD works have approached this primarily in two
ways. The first is fine-tuning [47, 65], where a model is
first pretrained on the base classes and then fine-tuned on
a small balanced set of data from both the base and novel
classes, a form of test-time training [59]. Although sim-
ple, it has difficulty scaling to many real-world applications
due to its computational and memory requirements. An
alternate strategy is taking a meta-learning approach [72].
Meta-learning approaches frame the problem as “learning
to learn” [4,10,32,44,61,69,72], training the model episod-
ically to induce fast adaptation to novel classes.

However, many FSD methods focus on the limited set-up
where only novel categories are to be detected. These meth-
ods often fail to preserve the original detector performance
on base categories [4, 10, 32, 72] or forget about the ones
it was initially trained on [65]. Given the ever-changing
nature of the real-world, a desirable property of machine
learning systems is the ability to incrementally learn new
concepts without revisiting previous ones and not forgetting
them [40, 42]. Humans are able to achieve such feat, learn-
ing novel concepts not only without forgetting but reusing
such knowledge [45]. Conventional supervised learning
struggles with incrementally presented data, tending to suf-
fer catastrophic forgetting [39, 51]. An alternative is study-
ing all the available data every time new concepts arrive,
commonly referred to as “joint training” [22], but such a
paradigm imposes a slow development cycle, requiring sig-
nificant data collection efforts for the new concepts and ex-
pensive large-scale training (and re-training).

Instead, we seek an object detection model capable of
learning new classes from a few shots in a fast, scalable
manner without forgetting previously seen classes, a set-
ting commonly referred to as incremental few-shot detec-
tion (iFSD). ONCE [44], a meta-learning approach to FSD,
is of particular interest due to its hypernetwork-based class-
conditional design. ONCE is able to enroll novel categories

without affecting its ability to remember base classes. We
use a base detector and hypernetwork architecture similar to
ONCE, but with a few key design differences: (1) ONCE,
along several other recent works [28,65,72], attempts to di-
rectly produce (via training or hypernet) the parameters of
a localization regression model that transforms the query
sample feature maps into the output bounding boxes, all
from the few available training samples. We find this to be
unnecessary and potentially harmful, as the task can be sig-
nificantly simplified by decoupling localization from clas-
sification. To achieve this goal, we leverage a base detec-
tor with class-agnostic localization capability pretrained on
abundant base class data. (2) We study the class-conditional
hypernetwork’s behavior, making some key changes to the
structure and adding normalization to the predicted param-
eters, resulting in much higher accuracy.

With an architecture that can swiftly adapt to the long tail
of classes from few shots, we name our framework Sylph,
after the nimble long-tailed hummingbird (Figure 1). We
present extensive evaluations that empirically demonstrate
the benefits of our design, showing that Sylph is more effec-
tive than ONCE [44] (our main baseline) across all the re-
ported datasets and evaluation regimes. On the challenging
LVIS few-shot learning benchmark in particular, we show
that Sylph is superior by a margin of 8% points.

2. Related Work
Object Detection Object detection is the task of simulta-
neously localizing and classifying objects within a scene.
Most modern object detectors consist of a convolutional
feature extractor [24, 31, 57] followed by various mech-
anisms or networks to predict classes and some form of
bounding box coordinates [25]. Detectors that first gen-
erate region proposals during inference are often referred
to as two-stage detectors [6, 17, 18, 23, 54], while ones
that directly predict class and localization from the con-
volutional feature maps are considered single-stage detec-
tors [8, 35, 38, 53, 62]. Single-stage detectors have the ad-
vantage of having simpler implementations and faster in-
ference speeds, and recent advances have increased their
accuracy to be competitive with two-stage models [37],
which had previously been the primary advantage of such
models. Throughout this work, we choose to primarily
use FCOS [62] as our base detector due to its strong per-
formance and class-agnostic localization based on “center-
ness” and intersection-over-union (IoU) losses; this allows
for better generalization and high recall on novel unseen
classes [29], especially when trained on large-scale datasets.
Few-shot Learning While many supervised learning ap-
proaches assume a large number of samples from the data
distribution, such methods risk overfitting when the model
has only a few samples to learn from. Given the costs of col-
lecting, annotating, and training models with large amounts

of data, few-shot learning has become an active research
direction, with image classification as the most common
task. Many recent approaches take a meta-learning strat-
egy [63]. Optimization-based approaches produce models
that can quickly learn from few samples [13,41,52]. Metric-
learning methods learn an embedding function that induces
a space where samples can be compared with nearest neigh-
bors or other such simple algorithms [33,58,60,64]. Hyper-
networks have also been used to predict model parameters
for new classes from limited samples [3, 14, 16, 48, 50, 66].
We use a hypernetwork in our model to predict convolu-
tional kernels for novel object classification. Such a strategy
requires zero training during inference time and can easily
scale to an arbitrary number of classes.
Few-shot Object Detection and Beyond Most neural net-
works are trained with stochastic gradient descent, which
often assumes the training data are drawn independently
and identically distributed (i.i.d.). However, this i.i.d. as-
sumption is violated in the practical scenario where few-
shot categories are seen only after the model have been
trained for a set of base categories. In such situations,
catastrophic forgetting [12,19] can occur: the model suffers
severe degradation in performance on the original classes.
In image classification, some works have proposed a gen-
eralized setting for few-shot learning to tackle this ex-
act situation [16, 46]. Similarly for object detection, re-
cent works have focused on incorporating few-shot cate-
gories into a model that has been pretrained with large-scale
datasets [11,44,65]. This goes beyond the simpler more tra-
ditional few-shot object detection set-up [28, 47, 48]. More
generally, continual object detection [1, 44] works attempt
to learn to detect new classes through several learning in-
stances without forgetting any of the seen categories.

Of the prior work with the goal of both few-shot and con-
tinual learning for object detection, some are continual only
in that they do not degrade base class accuracy during a sin-
gle few-shot adaptation to new classes [11, 65]. In contrast,
ONCE [44] considers a setting in which novel classes arrive
sequentially and incrementally, leading to multiple learning
events during which forgetting must be avoided. We adopt a
model architecture that is able to provide such capabilities,
as it is more flexible and a better fit for interactively learning
new classes from the world. Methodologically, however, we
approach the problem differently, as we (1) simplify learn-
ing by utilizing a detector with class-agnostic localization
rather than trying to learn per-class localization from only
a few samples; (2) leverage a per-class binary classifier to
allow incrementally and independently added novel classes
to co-exist with previously learned base classes, detecting
seen and novel classes in a single pass; (3) generate both
weights and biases for newly added classes, proposing an
effective weight normalization to the output of a hypernet-
work weight generator that enables stable training and more

Figure 1. The Sylph Framework. Sylph is composed of a base object detector and a few-shot hypernetwork, whose Code Generator
consists of a Code Predictor Head and Code Process Module (detailed in Section. 3.1.2). The dashed arrow indicates weight sharing.

effective synthesis of class-specific class codes.

3. Methods
We seek a model that can operate in the incremental

few-shot detection (iFSD) [44] setting: a detector that can
flexibly adapt to new classes introduced in sequence from
only a few examples, without forgetting any previously seen
classes. We differentiate this continuous iFSD with batch
iFSD where novel classes are added in a batch. Concretely,
after being pretrained on a base set of classes Cb, the ob-
jective is to achieve good performance on a novel class
cnt ∈ Cn from a support set of only K shots while main-
taining strong performance on Cb and the preceding novel
classes cnt′ ∀ t′ < t, without re-training on data from these
previous classes. As the goal is to learn to adapt to new
classes, we assume Cb ∩ Cn = ∅.

3.1. Sylph

To achieve the stated objective of iFSD, we introduce
Sylph, a framework that can quickly add detection capabil-
ities of new classes, without any additional optimization of
model parameters. Sylph is composed of two primary com-
ponents (Figure 1): (1) a base object detector with class-
agnostic localization to surface salient objects in an image
with high recall and (2) a few-shot hypernetwork to gener-
ate class-specific parameters for a per-class binary classifier.
We discuss each of these in detail below.

3.1.1 Object Detector

Modern object detection models [25] are often composed of
a convolutional backbone Fθ followed by a detector head
Dϕ. Given an image I , the former produces high-level fea-

ture maps h = Fθ(I), which can then be used by the detec-
tor head to predict both class c and location, as specified by
a bounding box b = (x, y, h, w). Many detection models
perform both these tasks in parallel [18, 38, 54], predicting
the class category and bounding box coordinates from the
same features: o = Dϕ(h), where o = [o1, ..., on] are pre-
dicted objects in I , with each object oi = [ci, bi] contain-
ing the predicted class label and bounding box. We denote
the final regression and classification layer as Bβ and Cγ ,
which can be a fully connected layer in region-based detec-
tion [54] or a convolutional layer in dense prediction [62].
For an N -way classification problem, the parameters γ for
the classifier normally produce N + 1 logits for a softmax,
corresponding to the N classes and the background. Mean-
while, the bounding box regressor’s parameters β contains
N stacked weights βc, with one for each class c; the class
with the highest prediction score determines which regres-
sor’s prediction is selected. In order for our object detector
to support the challenging iFSD setting, we make several
key design choices affecting the two primary outputs of a
detector: classification and localization.
Incremental Classification Without Forgetting A ma-
jor contributor to catastrophic forgetting is highly non-i.i.d.
sequential training with a shared classification head [12];
optimizing the softmax can result in destructive gradients
overwriting previous knowledge. We thus replace the sin-
gle softmax-based classifier Cγ with many binary sigmoid-
based classifiers Cγc , with each class individually handled
by its own set of parameters. When trained with the focal
loss [35], sigmoid classifiers have been shown to be just as
effective as a single softmax classifier. Thus, when adding
novel classes, we can train or generate a new set of classifier
parameters γnc . When combined with previous parameters

to predict all available classes, there is zero interference be-
tween each class’s prediction score.
Class-agnostic Bounding Box Regressor Previous few-
shot object detection methods [28, 44, 65] have tended to
learn a per-class box regressor Bβc

in tandem with the clas-
sifier. However, when only a few examples are available
for learning, the model has very little opportunity to learn
a custom location regressor for each novel class. Instead,
we propose pretraining the base object detector with a sin-
gle class-agnostic box regressor Bβ for all classes. When
adapting the model to novel classes Cn, we simply reuse Bβ
for localization. Such an approach has been shown to work
well for zero-shot object detection if pretrained on a large-
scale dataset [21] and can leverage progress in the open-
world detection literature [29]. By alleviating the need to
learn localization in a few-shot or continual manner, we can
treat the problem as a few-shot classification task and focus
just on generating additional classifier parameters γnc . We
validate the effectiveness of this setup in Section 5.

We can satisfy both the aforementioned objectives with
FCOS [62], a simple one-stage and anchor-free object de-
tector. With these design choices, we decouple the few-shot
novel class detection problem into serial tasks of localiza-
tion and few-shot classification, dramatically simplifying it.

3.1.2 Few-shot Hypernetwork
With localization handled by the class-agnostic object de-
tector, the problem reduces to few-shot classification. Sylph
uses a hypernetwork Hψ to generate parameters γ∗

c =
{wc, bc} for each binary classifier Cγ∗

c
. Hψ takes as input

an N -way K-shot episode of support set samples, consist-
ing of K instances of N classes randomly sampled from
the meta-training set. We denote this support set SN×K =
(IN×K , bN×K), with IN×K ∈ R(N∗K)×C×H×W . The hy-
pernetwork is modularized into three components: support
set feature extraction, code prediction, and code aggregation
and normalization, which we detail below.
Support Set Feature Extraction The first stage consists of
extracting features from the episode’s support set. We share
the same convolutional backbone Fθ from the base detec-
tor to obtain features for each of the support set images, as
it can be pretrained with the base detector in normal batch
training. ROIAlignV2 [23] is then used to pull the features
corresponding to the location of each instance of each class.
We choose to crop at the feature level rather than at the im-
age level, as features have a larger receptive field, poten-
tially allowing for increased global context. ROIAlignV2
produces a fixed size feature zc,i ∈ Rdf×dh×dw for each
object instance, with df being the channel dimension of the
final layer of the backbone, and typically dh = dw = 7.
Code Predictor Head (CPH) Given each support sample’s
extracted features zc,i, hypernetwork Hψ predicts weights
wc,i ∈ R1×C×k×k and bias bc,i ∈ R, where C is the pre-

Figure 2. Hypernetwork architecture of the code predictor head.

ceding channel dimension and k is the convolutional ker-
nel size. The code predictor head (Figure 2) consists of a
shared subnetwork consisting of 3× 3 convolutional layers
interleaved with group normalization [67] and ReLU activa-
tion functions, followed by a layer for predicting a weight
and bias. Global average pooling after the weight and bias
predictor layers is used to reduce the predicted weights to
the final dimensions. While the hypernetwork is capable of
predicting weights wc,i of arbitrary size, we choose a kernel
size of k = 1 so that the generated weights can be used as
either convolutional or linear layer weights, allowing com-
patibility with both region-based and dense detection.
Code Process Module (CPM) In the CPM, we aggre-
gate the predicted parameters for all samples of a class from
CPH into a single set of weights wc and bias bc. We found a
simple average of the weights and the bias across shots to be
effective: wc = 1

K

∑k−1
i=0 (wc,i) and bc = 1

K

∑k−1
i=0 (bc,i).

However, directly using the class code wc in this form can
cause gradient exploding, especially when stacking multi-
ple convolutional layers between the input features and the
final predictor head [16]. As shown in Fig. 4, gradient clip-
ping [43] can help, but occasionally the model still does not
converge well, leading to high variance in model accuracy.

Our weights wc, as generated from the input support set
features at this stage, more closely resemble feature maps
than classifier weights. To this end, we want to avoid di-
rectly passing wc to the conditional classifier. Inspired by
the success of L2-normalized feature embeddings in param-
eterizing classifiers for zero-shot object detection [2, 21],
we explore incorporating L2-normalization of the weights
wc

||wc|| . We normalize along the channel axis (in contrast
to batch normalization [26]) to ensure weights for differ-
ent classes do not interact. With normalization, learning is
simplified and training is stabilized by mapping the support
set features onto a unit sphere.

To ensure compatibility of the normalized weights wc

||wc||
with a non-cosine classifier, we follow [56] and add a learn-
able scalar parameter g, rescaling the normalized weights as
w∗
c = g

||wc||wc. This allows us to avoid needing to adapt the
classifier in the base detector. By replacing per-class norm
with a universal g, we end up with less variance across all

class weights. We found that predicting the bias counteracts
this negative effect. For the bias, we further add a prior bias
bp = − log((1 − π)/π), π = 0.01 following [35] and with
a scalar gb, resulting in a final bias of b∗c = gb ∗ bc + bp.

3.2. Training and Evaluation Details
To train the base detector and the hypernetwork, Sylph

framework requires two sequential training stages: pretrain-
ing the base detector and learning the hypernetwork.
Base Object Detector Pretraining We first pretrain the
base detector Dϕ with batch stochastic gradient descent on
base classes Cb, optimizing for classification and bounding
box regression losses. We choose FCOS as our base detec-
tor; we refer the reader to [62] for further training details.
The pretraining process produces trained parameters θ and
ϕ, as well as class agnostic box regression parameters β and
class codes for the base classes γb = {wcb , bcb} ∀ cb ∈ Cb.
Thus, at the conclusion of this stage, we have a detector Dϕ

capable of producing bounding boxes in an image for the
base classes and potentially novel classes as well.
Meta-training During meta-training, we create few-shot
episodes of N categories by sampling a set of N × (K +1)
image and bounding box tuples (I, b) from Cb, a support
set of N ×K samples, and a query set with N × 1 samples.
The query set is used as input to the base detector. Only the
focal loss [35] from the classification branch is computed
at this stage. The primary goal at this stage is to train the
few-shot hypernetwork Hψ so that it is able to map SN×K

to a new set of synthesized class codes γ∗
cb

= (w∗
cb
, b∗cb)

for classification. We freeze the whole base object detector
except the four convolutional layers in the FCOS classifi-
cation subnetwork and replace its initial classifier with our
conditional classifier capable of taking the synthesized class
codes to make predictions on the query image features. We
found that finetuning these extra convolutional layers in the
base detector results in better overall performance than not
finetuning them (Section 5). In preliminary experiments we
found that the more components/layers we initialize from
pretraining the better our final AP for base classes.
Meta-testing To evaluate the model’s performance across
all classes, we take K shots per-class samples from the
whole set and make feed-forward passes through the hy-
pernetwork one class at a time to synthesize class codes
γ∗
c = {w∗

c , b
∗
c} ∀ c ∈ Cb ∪ Cn. With the generated codes,

the base detector is able to perform inference at the same in-
ference speed and behavior as a normal detector. This setup
of our model is denoted as Sylph.

4. Experiments
Datasets and Metrics We benchmark and ablate Sylph on
two datasets: COCO [36] and LVIS [22]. For COCO, we
follow the split commonly used for few-shot object detec-
tion [28, 44, 65]: the 60 categories that are disjoint from

PASCAL VOC [9] are used as base classes, while the re-
maining 20 classes are designated novel. We report ex-
perimental results for K = {1, 5, 10, 20, 30} shots on the
COCO minival set. For LVIS-v1, we follow the organi-
cally long-tail distribution of the dataset as proposed in [65]
to produce a base-novel split. LVIS contains 405 frequent
classes appearing in more than 100 images, 461 common
classes with 10-100 images, and 337 rare classes with fewer
than 10 images, for a total of 1203 object categories. In our
experiments, we use the 337 rare classes as novel classes
and the 866 frequent and common classes as base classes.

For evaluation metrics, we report mean average preci-
sion (mAP) computed on a per-split basis; we run inference
for both the base and novel classes in a single pass, but we
report mAP separately as different models tend to have dif-
ferent performances across splits. For COCO, we denote
the mAPs for base and novel categories as APb and APn,
respectively. Similarly, for LVIS, APr, APc, and APf is
the average precision aggregated across rare, common, and
frequent classes, respectively. For all experiments, we re-
port the mean and standard deviation of the mAP across
five meta-testing runs. We run experiments with several pre-
training strategies: (1) Default: the model is pretrained on
ImageNet-1k [55]; (2) Aug: large-scale jittering (LSJ) [15]
and RandAugment [5] are also applied; and (3) All: in ad-
dition to the aforementioned augmentations, IG-50M pre-
trained backbone weights from PreDet [49] are used.
Implementation Details For all our experiments, we use
a ResNet-50 backbone [24] with a feature pyramid network
(FPN) [34]. We use SGD with momentum (0.9) and weight
decay (1e−4) for all training stages. During pretraining, we
set the learning rate to 1e−2 with a batch size of 16; we
increase the batch size to 128 when data augmentation is
on. During meta-training, we set the learning rate (lr) to
5e−4. We uniformly sample 3-way 5-shot tasks from the
base classes, with a single query image per class.

We pretrain for 90k steps (∼11hrs), with an extra 30k
steps for meta-learning (∼13hrs). The lr is decreased ten-
fold at steps 60k and 80k in the pretraining, and at 20k and
26k during the meta-training. Finally, we limit the number
of detections per image to 100 for COCO and 300 for LVIS.
We build our framework on top of Detectron2 [68]; we plan
to publicly release our code upon publication.

4.1. Incremental Few-shot Object Detection
As the only other method designed for iFSD, we pri-

marily compare against ONCE on both COCO and LVIS.
Focusing on the finetuning-free iFSD evaluation proto-
col [44], we demonstrate the effectiveness of Sylph with
several pretraining strategies. In addition, we report results
for a few training-intensive FSD methods as an upper bound
of our finetune-free approach, including joint-training,
which is normally used for long-tailed datasets [22], and

Table 1. Benchmarking on the eval split of LVIS-v1. We use K = 10 shots to infer base class codes and all available data for the rare
classes (≤ 10). Both ONCE∗ and Sylph predict all classes in a single pass. The base and novel data checkmarks indicate whether the data
is used to update model weights during an incremental learning step.

Pretrain Method Base Data Novel Data Continuous Re-training AP APr APc APf

Default

ONCE∗ [44] ✓ 12.9 (±0.65) 6.3 (±0.38) 11.2 (±0.60) 17.7 (±0.97)
Sylph ✓ 18.5 (±0.12)(↑5.6) 10.0 (±0.17) 16.5 (±0.25) 24.3 (±0.12)

TFA-ours ✓ ✓ 21.0 11.9 17.7 28.6
TFA∗ [65] ✓(K shots) ✓ ✓ 21.1 9.1 21.6 25.9
Joint-train [22] ✓ ✓ ✓ 20.7 8.7 18.2 28.8

Aug

ONCE∗ [44] ✓ 8.5 (±0.24) 6.1 (±0.31) 7.8 (±0.42) 10.2 (±0.14)
Sylph ✓ 20.7 (±0.10)(↑12.2) 13.9 (±0.21) 19.0 (±0.19) 25.5 (±0.02)

TFA-ours-aug ✓ ✓ 25.1 17.8 22.6 30.9
TFA∗-aug [65] ✓(K shots) ✓ ✓ 24.4 16.1 24.9 27.6
Joint-train [22] ✓ ✓ ✓ 24.3 13.3 22.7 30.9

All

ONCE∗ [44] ✓ 19.4 (±0.08) 12.3 (±0.33) 18.8 (±0.28) 23.3 (±0.12)
Sylph ✓ 24.6 (±0.10)(↑ 5.2) 16.5 (±0.34) 23.7 (±0.17) 29.1 (±0.02)

TFA-ours-aug ✓ ✓ 27.5 19.3 25.6 33.0
TFA∗-aug [65] ✓(K shots) ✓ ✓ 27.0 19.7 27.6 29.6
Joint-train [22] ✓ ✓ ✓ 27.2 18.0 26.4 33.6

Table 2. Benchmarking on COCO Dataset, evaluated on minival
set. We benchmark Sylph against ONCE for K = 1, 5, 10 shots,
with additional K = 20, 30 shots for Sylph. We also include 10-
shot TFA, which finetunes on novel data. To mimic the training
protocol of ONCE, we apply early-stop (at 30k steps) to Sylph
pretraining (denoted Sylph-es).

Shot Method APn APb

1
ONCE [44] 0.7 17.9
Sylph 0.9 (±0.11) 29.8 (±1.17)
Sylph (All) 1.1 (±0.14) 37.6 (±1.57)

5
ONCE [44] 1.0 17.9
Sylph 1.4 (±0.12) 35.5 (±0.18)
Sylph (All) 1.5 (±0.05) 42.4 (±0.13)

10

ONCE [44] 1.2 17.9
Sylph 1.6 (±0.06) 35.8 (±0.05)
Sylph-es 2.3 22.4
Sylph (All) 1.7 (±0.05) 42.8 (±0.07)
Sylph-LVIS 3.8 (±0.20) 37.7

Joint-train [22] 4.0 37.7
TFA-ours 3.6 N/A
TFA∗ [65] 5.7 35.9

20 Sylph 1.62 (±0.06) 36.0 (±0.08)
30 Sylph 1.65 (±0.06) 36.1 (±0.08)

a finetuning-based method known as TFA [65].
Finetuning-free iFSD benchmarking We primarily com-
pare with ONCE [44], as the most relevant method in this
setting. On COCO, we compare with the reported number
from [44] in Table 2. For LVIS, we re-implement ONCE
with a baseline version of our code generator which has no
bias prediction, no weight norm, no scaling factor g in the
CPM, and no convolutional layers in the shared portion of
the CPH, which effectively leaves the basic components of
the hypernetwork as close to the originally-proposed ONCE
as possible. We denote this version ONCE∗ in Table 1.

We demonstrate that the key design choices of Sylph al-
low it to significantly outperform ONCE on both datasets,

across all data splits. On the large-scale dataset LVIS, Sylph
surpasses ONCE by 8% averaged across different pretrain-
ing strategies in a fair head-to-head (no additional data aug-
mentation or pretraining data). For the heavy data aug-
mentation setup, Aug, ONCE∗ struggles to converge during
training, resulting in much worse performance than Sylph.
In particular, we show that our method is truly able to learn
novel categories from few shots without forgetting base
classes. For example, with early stopping during pretrain-
ing (Sylph-es in Table 2) and K = 10 shots on COCO, we
achieve an APn twice as good as ONCE, while still surpass-
ing it by 4 points for the base classes.
Joint-training and finetune-based iFSD as upper
bounds For the Joint-train method, we follow [22] to
ensure its effectiveness on the novel split in the low-data
regime. In particular, we perform repeat factor sampling
with the factor set to 0.001 in order to balance the sam-
pling frequency across different classes during training. We
select TFA [65] to represent finetuning-based iFSD meth-
ods. For this, we adapt the TFA [65] methodology to our
FCOS-based framework, following the finetuning proto-
col as closely as possible. Specifically, this involves two
training steps: (1) pretraining of the base detector on base
classes; (2) sampling K = 10 shots across both base
and novel classes while freezing all layers other than the
box regressor and the classifier. We finetune the regressor
and train a new classifier for all classes, with base clas-
sifier parameters initialized from pretraining. We denote
the adapted TFA method as TFA∗. Additionally, we make
several modification to the standard TFA to bring it closer
to our setup, adjusting to an incremental batch setup [44]
where the novel classes are added in a single round. In par-
ticular, in the finetuning stage, (1) only Cn is used, (2) the
box regressor is kept frozen, and (3) the classifier is not ini-
tialized with any pretrained base class parameters, as we do
not finetune on the base classes. In this setup, a deployed

model can be directly extended without any backbone mod-
ification to novel categories. We label this version of TFA
as TFA-ours, as it is made possible by our framework. As
our model relies on a large-scale dataset in the meta-training
stage, we create a variant, Sylph-LVIS, which uses the LVIS
dataset excluding the COCO novel classes while keeping all
parts of the base detector frozen so that it is able to preserve
its pretrained COCO base class codes.

We report these benchmarking results on both datasets in
Tables 1 and 2. An interesting observation here is that, for
all the FSD methods we benchmarked, their precision on the
novel split increases significantly with an increased number
of base classes. As we go from the 60 base classes in COCO
to 866 base classes in LVIS, Sylph achieves around a 9%
gain in APr and APn in Tables 1 and 2, even surpassing the
gains achieved by all the variants where training and fine-
tuning is allowed. In terms of the overall precision across
all classes, Sylph’s performance is not far from finetuning-
intensive methods: just 3 and 4 points lower compared
to the best performing upper bound method on LVIS. On
COCO, for example, with class augmentation in the meta-
learning stage, our Sylph-LVIS achieves 3.8 AP, only 0.2 AP
short of the joint-training approach.
More FSD model behavior analysis On LVIS, we bench-
marked all FSD methods across three pretraining strategies,
showing that all methods benefit from the use of additional
augmentations and large-scale weak supervision pretraining
across both novel and base classes, including Sylph. This
behavior is highly desirable for Sylph, as it benefits from
any improvement to the base detector.

However, for a smaller scale dataset (e.g. COCO), the
boost in novel class performance for Sylph is less than the
gain on the base classes, as shown in Table 2 for rows cor-
responding to Sylph (All). This is related to episodic learn-
ing, where more tasks lead to improved learning compared
to more per-task data. We further validate this with Sylph-
LVIS, which has a similar amount of training data, but with
more tasks; impressively, we find that Sylph-LVIS achieves
comparable accuracy to the joint-training approach. Still,
we see a large precision gap between Sylph-LVIS on the
COCO novel split and Sylph on LVIS rare classes, indicat-
ing that large-scale pretraining is essential, as it results in
(1) a more accurate bounding box locator, and (2) a feature
extractor that can generalize better to novel classes.

Also, surprisingly, the adapted simple approach TFA-
ours is able to achieve better precision on LVIS than its
standard counterpart TFA with our selected base detector,
with the advantage of not revisiting the base data at all.

5. Ablations and Further Discussion
We run all experiments in this section with the Default

pretraining strategy unless otherwise stated.
How does the number of base classes impact the novel

Figure 3. The effect of the number of base classes in sylph meta-
training. The blue, orange, and green backgrounds denote fre-
quent, common, and rare classes, respectively.

class precision? For this experiment, we randomly choose
50 classes from the frequent classes of LVIS as a novel
set. We report base and novel mAP in Figure 3 on this
fixed novel while gradually increasing the number of base
classes, starting from the frequent, moving to common, and
then the rare classes. For all the plotted points, we complete
the training of Sylph on the base split, and use K = 10 for
class codes inference. We confirm the effect of a larger base
set in novel class detection precision in Fig. 3. Indeed, novel
class mAP rapidly increases in the frequent classes region,
slows down when adding common classes, and starts to
fully stabilize at around 800 base classes in the rare classes
region. Not surprisingly, novel class score increases more
rapidly when the backbone is pretrained with classes that
have more samples. These results indicate for the first time
that challenging incremental few-shot detection is feasible
when there is a large enough base dataset.
Model ablations We study the effect of several key el-
ements of our model, including the normalization scheme
(GroupNorm (GN) vs L2-Norm), the weight scaling factor
g, predicted bias, and the number of convolutional layers
stacked in CPH for the classifier. These results are shown
in Table 3, from which we can see that overall, using either
L2-Norm or GN is very beneficial for Sylph, improving the
overall AP across all subsets of classes by around 6 abso-
lute points w.r.t. the baseline. However, when both GN and
L2-Norm are applied, there is no obvious extra gain. Com-
paring the last three rows in Table 3, we see that the use
of g and bias results in a small accuracy improvement. We
plotted the loss of different configurations in Fig. 4. From
the leftmost figure, we can see that L2-Norm has the largest
impact in curbing the loss than any other configuration. Ad-
ditionally, from the rightmost figure, we can see that both
L2-Norm and GN converge better than models without nor-
malization. Overall, we can conclude that the elements that
form Sylph are effective at both learning base classes and

Table 3. Ablation study: Modeling choices of Sylph on the LVIS.

Bias GN L2-Norm g #conv AP APr APc APf

0 12.9 (±0.65) 6.3 (±0.38) 11.2 (±0.60) 17.7 (±0.97)
✓ 0 9.7 (±0.25) 3.9 (±0.37) 8.3 (±0.27) 13.7 (±0.34)
✓ ✓ ✓ 0 17.2 (±0.12) 8.8 (±0.26) 15.3 (±0.23) 23.2 (±0.14)
✓ ✓ ✓ 0 18.0 (±0.12) 9.3 (±0.39) 16.1 (±0.15) 24.0 (±0.15)
✓ ✓ ✓ ✓ 0 18.0 (±0.12) 9.1 (±0.29) 16.2 (±0.27) 24.0 (±0.15)
✓ ✓ ✓ ✓ 1 18.5 (±0.12) 10.0 (±0.17) 16.5 (±0.25) 24.3 (±0.12)
✓ ✓ ✓ ✓ 2 18.6 (±0.13) 10.1 (±0.16) 16.7 (±0.29) 24.5 (±0.10)
✓ ✓ ✓ 2 18.5 (±0.07) 9.0 (±0.17) 16.8 (±0.20) 24.5 (±0.08)

✓ ✓ 2 18.4 (±0.07) 9.5 (±0.29) 16.7 (±0.17) 24.1 (±0.11)

Figure 4. The loss comparison for different model setups. On the
right side, we plot the losses starting from training step 100.

generalizing to novel ones.
Training recipe ablations We also explored different train-
ing recipes, (1) FA: strictly freezing the whole base detector
during meta-training, preserving the pretrained base class
codes. (2) Joint: pretraining and meta-training on all avail-
able classes with the default setup. We report the result in
Table 4. As we can see, Sylph’s training recipe beats that of
FA by 2 points on the All setup. This means that allowing
the classification convolutional subnetwork in the base de-
tector to adapt during meta-training is important in our pro-
posed framework. However, Joint performs comparably to
FA, falling behind Sylph even though it has seen the novel
classes during training. We think this might be explained
by two reasons: (1) As the number of base classes increases,
Joint struggles to recover the base class AP in meta-training.
(2) As we use uniform sampling on the class-level, when
mixed with rare classes, the more frequent classes get sam-
pled less, thus leading to AP drop on those splits.
Does freezing the base detector in the meta-test stage
limit few-shot continual learning capabilities? We set up
a simple two step continual learning task and solve it with
finetuning [42, 65]. In particular, given a pretrained FCOS
model on base classes, we freeze most parts of the detec-
tor and finetune the remaining parts on all available novel
data. On COCO, we keep the same base and novel splits.
On LVIS, we use 100 randomly selected frequent classes
as the novel split and the remaining 1103 classes as base
classes. We follow TFA∗-st where the box regressor and

Table 4. Effect of the training recipe on the Sylph Framework. We
report average precision across five runs.

Setup Method AP APr APc APf

Default
FA 18.3 10.5 16.3 23.9

Joint 18.5 10.8 16.5 24.2
Sylph 18.5 10.0 16.5 24.3

Aug FA 19.9 12.5 18.5 24.8
Joint 19.2 12.8 17.7 23.8
Sylph 20.7 13.9 19.0 25.5

All FA 22.5 15.4 21.2 27.1
Joint 22.5 17.2 21.2 26.4
Sylph 24.6 16.5 23.7 29.1

Table 5. Novel set accuracy comparison across the finetuning ap-
proaches. Full training of the detector is denoted Scratch.

Dataset Setup Method Cls Box APn

COCO All
Scratch N/A N/A 49.9

TFA-ours ✓ 47.1
TFA∗-st ✓ ✓ 50.5

LVIS All
Scratch N/A N/A 34.9

TFA-ours ✓ 30.5
TFA∗-st ✓ ✓ 34.3

classifier are finetuned and TFA-ours where only the classi-
fier is trained. The results, along with a normal training on
the novel set from scratch, are shown in Table 5. We see
that, surprisingly, there is no obvious performance drop for
the finetune approach, and even with the strict setup TFA-
ours, the APn only decreases by 3 points. As TFA-ours
closely resembles the training scheme of Sylph, we can con-
clude that the formulation we propose here does not entail
a large sacrifice to the novel class learning potential.

6. Conclusion
We introduce Sylph, an object detection framework ca-

pable of extending to new classes from only a few exam-
ples in a continual manner without any training. We empiri-
cally validate that our design choices lead to effective train-
ing and improved accuracy, showing for the first time that
an iFSD without test-time training can achieve performance
close to finetune-based methods on large scale datasets like
LVIS. While we view Sylph as an improvement over exist-
ing methods, there are limitations. Though we have demon-
strated that pretraining a class-agnostic detector can surface
novel objects with high recall, it is not infallible and still
dependent on large-scale datasets. Unlabeled objects due
to annotator error or a class not being in the label set can
result in false negatives in the dataset, which may lead to
the model failing to surface such objects [27, 30, 71]. Ad-
ditionally, more sophisticated aggregation methods to fuse
support set features may also lead to further improvements.

Acknowledgements

We thank Vignesh Ramanathan, Abhijit Ogale, and
Zhicheng Yan for valuable discussions and insights.

References
[1] Manoj Acharya, Tyler L Hayes, and Christopher Kanan.

Rodeo: Replay for online object detection. BMVC, 2020.
2

[2] Ankan Bansal, Karan Sikka, Gaurav Sharma, Rama Chel-
lappa, and Ajay Divakaran. Zero-shot object detection. In
ECCV, pages 384–400, 2018. 4

[3] Luca Bertinetto, João F Henriques, Jack Valmadre, Philip
Torr, and Andrea Vedaldi. Learning feed-forward one-shot
learners. In NeurIPS, pages 523–531, 2016. 2

[4] Tung-I Chen, Yueh-Cheng Liu, Hung-Ting Su, Yu-Cheng
Chang, Yu-Hsiang Lin, Jia-Fong Yeh, Wen-Chin Chen, and
Winston H Hsu. Dual-awareness attention for few-shot ob-
ject detection. arXiv preprint arXiv:2102.12152, 2021. 1

[5] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V
Le. Randaugment: Practical automated data augmentation
with a reduced search space. In CVPR, pages 702–703, 2020.
5

[6] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Object
detection via region-based fully convolutional networks. In
NeurIPS, pages 379–387, 2016. 2

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. ImageNet: A large-scale hierarchical image
database. In CVPR, pages 248–255, 2009. 1

[8] Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qing-
ming Huang, and Qi Tian. Centernet: Keypoint triplets for
object detection. In ICCV, pages 6569–6578, 2019. 2

[9] Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object
classes (voc) challenge. IJCV, 88(2):303–338, 2010. 5

[10] Qi Fan, Wei Zhuo, Chi-Keung Tang, and Yu-Wing Tai. Few-
shot object detection with attention-rpn and multi-relation
detector. In CVPR, pages 4013–4022, 2020. 1

[11] Zhibo Fan, Yuchen Ma, Zeming Li, and Jian Sun. General-
ized few-shot object detection without forgetting. In CVPR,
pages 4527–4536, 2021. 2

[12] Sebastian Farquhar and Yarin Gal. Towards ro-
bust evaluations of continual learning. arXiv preprint
arXiv:1805.09733, 2018. 2, 3

[13] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep networks.
In ICML, pages 1126–1135. PMLR, 2017. 2

[14] Marta Garnelo, Dan Rosenbaum, Christopher Maddison,
Tiago Ramalho, David Saxton, Murray Shanahan, Yee Whye
Teh, Danilo Rezende, and SM Ali Eslami. Conditional neu-
ral processes. In ICML, pages 1704–1713. PMLR, 2018. 2

[15] Golnaz Ghiasi, Yin Cui, Aravind Srinivas, Rui Qian, Tsung-
Yi Lin, Ekin D Cubuk, Quoc V Le, and Barret Zoph. Simple
copy-paste is a strong data augmentation method for instance
segmentation. In CVPR, pages 2918–2928, 2021. 5

[16] Spyros Gidaris and Nikos Komodakis. Dynamic few-shot
visual learning without forgetting. In CVPR, 2018. 2, 4

[17] Ross Girshick. Fast r-cnn. In ICCV, pages 1440–1448, 2015.
2

[18] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra
Malik. Rich Feature Hierarchies for Accurate Object Detec-

tion and Semantic Segmentation. In CVPR, pages 580–587,
2014. 1, 2, 3

[19] Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville,
and Yoshua Bengio. An empirical investigation of catas-
trophic forgetting in gradient-based neural networks. arXiv
preprint arXiv:1312.6211, 2013. 2

[20] Kristen Grauman, Andrew Westbury, Eugene Byrne,
Zachary Chavis, Antonino Furnari, ..., Lorenzo Torresani,
Mingfei Yan, and Jitendra Malik. Ego4D: Around the World
in 3,000 Hours of Egocentric Video. CVPR, 2022. 1

[21] Xiuye Gu, Tsung-Yi Lin, Weicheng Kuo, and Yin Cui. Zero-
shot detection via vision and language knowledge distilla-
tion. arXiv preprint arXiv:2104.13921, 2021. 4

[22] Agrim Gupta, Piotr Dollar, and Ross Girshick. Lvis: A
dataset for large vocabulary instance segmentation. In CVPR,
pages 5356–5364, 2019. 1, 5, 6

[23] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In ICCV, pages 2961–2969, 2017. 1, 2,
4

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
pages 770–778, 2016. 1, 2, 5

[25] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu,
Anoop Korattikara, Alireza Fathi, Ian Fischer, Zbigniew Wo-
jna, Yang Song, Sergio Guadarrama, et al. Speed/accuracy
trade-offs for modern convolutional object detectors. In
CVPR, pages 7310–7311, 2017. 2, 3

[26] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In ICML, pages 448–456. PMLR, 2015. 4

[27] KJ Joseph, Salman Khan, Fahad Shahbaz Khan, and Vi-
neeth N Balasubramanian. Towards open world object de-
tection. In CVPR, pages 5830–5840, 2021. 8

[28] Bingyi Kang, Zhuang Liu, Xin Wang, Fisher Yu, Jiashi Feng,
and Trevor Darrell. Few-shot object detection via feature
reweighting. In ICCV, pages 8420–8429, 2019. 1, 2, 4, 5

[29] Dahun Kim, Tsung-Yi Lin, Anelia Angelova, In So
Kweon, and Weicheng Kuo. Learning open-world ob-
ject proposals without learning to classify. arXiv preprint
arXiv:2108.06753, 2021. 2, 4

[30] Sachin Konan, Kevin J Liang, and Li Yin. Extending one-
stage detection with open-world proposals. arXiv preprint
arXiv:2201.02302, 2022. 8

[31] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. NeurIPS, 25:1097–1105, 2012. 1, 2

[32] Bohao Li, Boyu Yang, Chang Liu, Feng Liu, Rongrong Ji,
and Qixiang Ye. Beyond max-margin: Class margin equilib-
rium for few-shot object detection. In CVPR, pages 7363–
7372, 2021. 1

[33] Kevin J Liang, Samrudhdhi Rangrej, Vladan Petrovic, and
Tal Hassner. Few-shot learning with noisy labels. CVPR,
2022. 2

[34] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyramid
networks for object detection. In CVPR, pages 2117–2125,
2017. 5

[35] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In ICCV,
pages 2980–2988, 2017. 2, 3, 5

[36] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft COCO: Common Objects in Context. In
ECCV, pages 740–755. Springer, 2014. 1, 5

[37] Li Liu, Wanli Ouyang, Xiaogang Wang, Paul Fieguth, Jie
Chen, Xinwang Liu, and Matti Pietikäinen. Deep learning
for generic object detection: A survey. IJCV, 128(2):261–
318, 2020. 1, 2

[38] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C
Berg. Ssd: Single shot multibox detector. In ECCV, pages
21–37. Springer, 2016. 2, 3

[39] Michael McCloskey and Neal J Cohen. Catastrophic Inter-
ference in Connectionist Networks: The Sequential Learning
Problem. The Psychology of Learning and Motivation, 1989.
1

[40] Nikhil Mehta, Kevin J Liang, Vinay Kumar Verma, and
Lawrence Carin. Continual learning using a bayesian non-
parametric dictionary of weight factors. In International
Conference on Artificial Intelligence and Statistics, pages
100–108. PMLR, 2021. 1

[41] Alex Nichol, Joshua Achiam, and John Schulman. On
first-order meta-learning algorithms. arXiv preprint
arXiv:1803.02999, 2018. 2

[42] German I Parisi, Ronald Kemker, Jose L Part, Christopher
Kanan, and Stefan Wermter. Continual lifelong learning with
neural networks: A review. Neural Networks, 113:54–71,
2019. 1, 8

[43] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On
the difficulty of training recurrent neural networks. In ICML,
pages 1310–1318. PMLR, 2013. 4

[44] Juan-Manuel Perez-Rua, Xiatian Zhu, Timothy M
Hospedales, and Tao Xiang. Incremental few-shot ob-
ject detection. In CVPR, pages 13846–13855, 2020. 1, 2, 3,
4, 5, 6

[45] Steven Pinker. How the mind works. Penguin UK, 2003. 1
[46] Hang Qi, Matthew Brown, and David G Lowe. Low-shot

learning with imprinted weights. In CVPR, 2018. 2
[47] Limeng Qiao, Yuxuan Zhao, Zhiyuan Li, Xi Qiu, Jianan Wu,

and Chi Zhang. Defrcn: Decoupled faster r-cnn for few-shot
object detection. In ICCV, pages 8681–8690, 2021. 1, 2

[48] Siyuan Qiao, Chenxi Liu, Wei Shen, and Alan L Yuille. Few-
shot image recognition by predicting parameters from activa-
tions. In CVPR, pages 7229–7238, 2018. 2

[49] Vignesh Ramanathan, Rui Wang, and Dhruv Mahajan. Pre-
det: Large-scale weakly supervised pre-training for detec-
tion. In ICCV, pages 2865–2875, 2021. 5

[50] Samrudhdhi Bharatkumar Rangrej, Kevin J Liang, Xi Yin,
Guan Pang, Theofanis Karaletsos, Lior Wolf, and Tal Hass-
ner. Revisiting linear decision boundaries for few-shot learn-
ing with transformer hypernetworks. 2021. 2

[51] Roger Ratcliff. Connectionist Models of Recognition Mem-
ory: Constraints Imposed by Learning and Forgetting Func-
tions. Psychology Review, 1990. 1

[52] Sachin Ravi and Hugo Larochelle. Optimization as a model
for few-shot learning. ICLR, 2017. 2

[53] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object de-
tection. In CVPR, pages 779–788, 2016. 2

[54] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster R-CNN: Towards Real-time Object Detection with
Region Proposal Networks. NeurIPS, 28:91–99, 2015. 2,
3

[55] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. IJCV, 115(3):211–252,
2015. 5

[56] Tim Salimans and Durk P Kingma. Weight normalization:
A simple reparameterization to accelerate training of deep
neural networks. NeurIPS, 29:901–909, 2016. 4

[57] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 2

[58] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypi-
cal networks for few-shot learning. NeurIPS, 30:4077–4087,
2017. 2

[59] Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei
Efros, and Moritz Hardt. Test-time training with self-
supervision for generalization under distribution shifts. In
ICML. PMLR, 2020. 1

[60] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS
Torr, and Timothy M Hospedales. Learning to compare: Re-
lation network for few-shot learning. In CVPR, pages 1199–
1208, 2018. 2

[61] Sebastian Thrun and Lorien Pratt. Learning to learn.
Springer Science & Business Media, 2012. 1

[62] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. Fcos:
Fully convolutional one-stage object detection. In ICCV,
pages 9627–9636, 2019. 2, 3, 4, 5

[63] Joaquin Vanschoren. Meta-learning: A survey. arXiv
preprint arXiv:1810.03548, 2018. 2

[64] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan
Wierstra, et al. Matching networks for one shot learning.
NeurIPS, 29:3630–3638, 2016. 2

[65] Xin Wang, Thomas E Huang, Trevor Darrell, Joseph E Gon-
zalez, and Fisher Yu. Frustratingly simple few-shot object
detection. arXiv preprint arXiv:2003.06957, 2020. 1, 2, 4,
5, 6, 8

[66] Xin Wang, Fisher Yu, Ruth Wang, Trevor Darrell, and
Joseph E Gonzalez. Tafe-net: Task-aware feature embed-
dings for low shot learning. In CVPR, pages 1831–1840,
2019. 2

[67] Yuxin Wu and Kaiming He. Group normalization. In ECCV,
pages 3–19, 2018. 4

[68] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen
Lo, and Ross Girshick. Detectron2. https://github.
com/facebookresearch/detectron2, 2019. 5

[69] Yang Xiao and Renaud Marlet. Few-shot object detection
and viewpoint estimation for objects in the wild. In ECCV,
pages 192–210. Springer, 2020. 1

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

[70] Xiaopeng Yan, Ziliang Chen, Anni Xu, Xiaoxi Wang, Xi-
aodan Liang, and Liang Lin. Meta r-cnn: Towards general
solver for instance-level low-shot learning. In ICCV, 2019.
1

[71] Yuewei Yang, Kevin J Liang, and Lawrence Carin. Object
detection as a positive-unlabeled problem. In BMVC, 2020.
8

[72] Gongjie Zhang, Zhipeng Luo, Kaiwen Cui, and Shijian
Lu. Meta-detr: Image-level few-shot object detection
with inter-class correlation exploitation. arXiv preprint
arXiv:2103.11731, 2021. 1, 2

	. Introduction
	. Related Work
	. Methods
	. Sylph
	Object Detector
	Few-shot Hypernetwork

	. Training and Evaluation Details

	. Experiments
	. Incremental Few-shot Object Detection

	. Ablations and Further Discussion
	. Conclusion

