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ABSTRACT

Recently, progress has been made in the supervised training of Convolutional Object Detectors (e.g. Faster R-
CNN) for threat recognition in carry-on luggage using X-ray images. This is part of the Transportation Security
Administration’s (TSA’s) mission to ensure safety for air travelers in the United States. Collecting more data
reliably improves performance for this class of deep algorithm, but requires time and money to produce training
data with threats staged in realistic contexts. In contrast to these hand-collected data containing threats, data
from the real-world, known as the Stream-of-Commerce (SOC), can be collected quickly with minimal cost;
while technically unlabeled, in this work we make a practical assumption that these are without threat objects.
Because of these data constraints, we will use both labeled and unlabeled sources of data for the automatic
threat recognition problem. In this paper, we present a semi-supervised approach for this problem which we
call Background Adaptive Faster R-CNN. This approach is a training method for two-stage object detectors
which uses Domain Adaptation methods from the field of deep learning. The data sources described earlier are
considered two “domains”: one a hand-collected data domain of images with threats, and the other a real-world
domain of images assumed without threats. Two domain discriminators, one for discriminating object proposals
and one for image features, are adversarially trained to prevent encoding domain-specific information. Penalizing
this encoding is important because otherwise the Convolutional Neural Network (CNN) can learn to distinguish
images from the two sources based on superficial characteristics, and minimize a purely supervised loss function
without improving its ability to recognize objects. For the hand-collected data, only object proposals and image
features completely outside of areas corresponding to ground truth object bounding boxes (background) are used.
The losses for these domain-adaptive discriminators are added to the Faster R-CNN losses of images from both
domains. This technique enables threat recognition based on examples from the labeled data, and can reduce
false alarm rates by matching the statistics of extracted features on the hand-collected backgrounds to that of
the real world data. Performance improvements are demonstrated on two independently-collected datasets of
labeled threats.

Keywords: Deep Learning, Threat Recognition, Security Screening, Convolutional Neural Networks, Machine
Learning, Computer Vision, Object Detection

1. INTRODUCTION

Personal baggage security checkpoints consist of X-ray scanners and human operators, and their purpose is to
prevent harm by capturing threatening objects and weapons. Modern X-ray scanner systems use sophisticated
technology to construct internal views of bags or belongings, but these systems are still reliant on human operators
to identify and locate threats. Bags can be highly cluttered environments, and owing to the transmissive nature
of X-ray sensing, objects layer on top of each other in views. Some examples of threat objects in bags can be
seen in Figure 1. Operators must be vigilant to catch all of a diverse, constantly evolving, but relatively rare set
of prohibited items; all while maintaining high passenger throughput. In order to reduce the cognitive load on
these human threat screeners, we seek automated solutions for threat screening.

In the field of computer vision, identifying and localizing objects in a scene is called object detection. Recently,
convolutional neural networks (CNNs)1 have resulted in major improvements in performance, with many modern
object detection models2–6 utilizing CNNs as a key component. Given their excellent performance on benchmark
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Figure 1: Sample detections from mixed datasets of (a) knife, (b) gun, (c) blunt, and (d) liquids, aerosols, and gels (LAGs)
threats. Images scanned with a laboratory prototype not in TSA configuration.

datasets such as Cityscapes7 and MS COCO,8 these models are now being considered for certain real world
settings, including baggage screening at airport checkpoints. However, the baggage scan images are different
from the kinds of images in common object detection benchmarks. In particular, while common benchmark
datasets are constructed to have a high number of object instances per image, threat items at checkpoints
occur comparably infrequently. For example, the United States Transportation Security Administration (TSA)
caught 4,432 firearms in carry-on baggage at US airport checkpoints in 2019, but against a backdrop of a billion
passengers.9

This paper concerns an application of convolutional object detection using unlabeled imagery to improve
threat detection in X-ray images. Unlike the expensive staging, imaging, and labeling of threat data, real-
world scans can be readily and cheaply collected from functioning airport checkpoints. These real-world data
are referred to as the Stream-of-Commerce (SOC). Modern deep neural network techniques are extremely
data hungry, showing log-linear improvements with dataset size, i.e. roughly linear performance increases with
exponentially increasing numbers of examples.10 A technique which could train with these vast quantities of
unlabeled images to improve threat detection is therefore highly valuable. Using such images would not be
intended to improve recall (otherwise known as probability of detection). Instead, by exposing the model during
training to a broader variety of real-world backgrounds we could reduce false alarm rates. However, strictly
supervised use of unlabeled imagery as negative examples (the SOC) contains risks. Distinguishing patterns in
the data (images) between the SOC and the labeled dataset could be discovered by a sufficiently flexible neural
network, resulting in brittle predictions due to the difference in object occurrences between these two sets. In
our case, this means that, if used näıvely, the network can recognize domain differences between hand-labeled
data and SOC data. Once the model has learned to distinguish the domains, it can encode that images from
the SOC all contain no objects and suppress detections, undermining the goal of real-world threat detection. In
order to overcome this capacity of a Convolutional Neural Network (CNN) to distinguish domains, we will use
techniques from domain adaptation.11,12

In this paper, our contribution is to demonstrate the real-world use of a variant of Domain Adaptive Faster
R-CNN13 that accounts for target shift between the image domains. Our Background Adaptive Faster R-CNN
makes a strong assumption about the prior probability of targets in the target domain, particularly that images
from this domain have no foreground (threat) objects. First we will give a brief introduction to Unsupervised
Domain Adaptation (UDA) and its use in object detection. Then, we will describe some related works in the field
of automatic threat detection in X-ray images, focusing on recent work in modern deep convolutional approaches.
Next, we will describe how our method is used to enable learning from the threatless real-world data (the SOC).
In the results section, we will show some improvements in performance using our technique to a baseline Faster
Regions with Convolutional Neural Networks (Faster R-CNN)5 approach. These positive results demonstrate
successful use of the SOC data and indicate great promise for future applications of automatic threat recognition
to airport security checkpoints.



2. BACKGROUND

In this section, we will describe the concepts and theory from recent works of machine learning which are applied
in Background Adaptive Faster R-CNN (BA Faster R-CNN). Specifically, we will introduce the concepts of
adversarial training, target shift, and covariate shift from the UDA literature.

2.1 Unsupervised Domain Adaptation

In the most basic formulation of adversarial domain adaptation,11,14 we have access to a labeled dataset DS

from a source domain and an unlabeled dataset DT from a target domain, and we wish to train a classifier that
performs well on test data from the target domain without using any labels from DT . We will consider two types
of shifts between data domains, defining them now as they pertain to image classification.12,15 First, target shift
refers to unequal label prior probabilities between two distributions, p(y) 6= p′(y). The other type is covariate
shift, which refers to a difference between the conditional distributions of an image given its class category:
p(x|y) 6= p′(x|y). One way to improve performance on the target dataset is to train a domain-invariant classifier
through matching the marginal distribution of features extracted from the data x of either dataset DT or DS .
The marginal distribution of features, and not a class-specific conditional feature distribution, is used because
it only requires the data and not the labels. Domain Adaptive Neural Network (DANN)11 introduced a method
for learning domain-invariant features by using an adversarial loss via domain discriminator. If the marginal
distribution of features h extracted from target data are referred to by pT (h), and the marginal distribution of
features extracted from source data are pS(h), then the domain-invariant features are achieved when:

pS(h) = pT (h) (1)

Because these features depend on learnable parameters in a CNN, stating that probability distributions are
equal is not a static description of the data, but implies the matching of these distribution by learning a suitable
feature extractor using adversarial training.11,13,14 As shown previously,12 if the prior probabilities of the target
domain classes were known, pT (y), then an adapted feature extractor for the target domain can be learned by
matching the distributions:

pT (h) = qS(h) =
∑
c

pS(h|y = c)pT (y = c) (2)

Where c is one of the classes in DT or DS , and qS is a model distribution which is the class-conditional weighted
average of source features, weighted according to their incidence in the target domain. This is not done under
normal conditions because unsupervised domain adaptation implies that we do not have pT (y = c).

2.2 Unsupervised Domain Adaptation in Object Detection

These concepts were extended to object detection in a self-driving car setting13 by matching the distributions
of CNN features of the overall images and the proposed objects, demonstrating that an object detection model
trained on mostly clear weather day images can still perform well on night, foggy, or inclement weather settings.
As in DANN, the method assumed that only marginal feature distributions needed to be matched to produce
domain-invariant features. In this case, this was a safe assumption, because the target dataset of cloudy images
was synthetically produced by transforming the source dataset of sunny images, guaranteeing equal likelihood
of object occurrences in images from both sets. This simple treatment of the object occurrences in the two data
sources will not work for threat recognition in X-ray images. An individual image from the SOC has a low prior
probability of containing a threat while labeled data were all staged with threats.

3. RELATED WORKS

This paper describes an application of recent developments in computer vision to the problem of automated
threat detection in luggage, but this problem has been studied for many years. Early work using machine
learning for X-ray image classification relied on hand-crafted features such as Difference of Gaussians (DoG) and
scale-invariant feature transform (SIFT).16 These hand-crafted features were then fed to a traditional classifier
such as a Support Vector Machine (SVM),17 leveraging an approach known as Bag-of-Visual-Words.18–22



The first application of deep learning algorithms to images of X-ray baggage involved manually cropping
regions of x-ray images and classifying the crops according to different categories of firearms and knives, as
well as classes of camera and laptop.23 This was accomplished via transfer learning, in which a pre-trained
CNN was fine-tuned for the specific datasets of X-ray baggage. Deep object detection algorithms have also been
investigated for use in X-ray baggage scans.24–27 In these investigations, a range of CNN feature extractors have
been examined, including VGG,28 Inception V2,29 and ResNet.30 Furthermore, a variety of CNN-based detection
algorithms are adapted for X-ray baggage: Faster R-CNN,5 R-FCN,31 and YOLOv2.32 We encourage readers
to see a recent survey33 for a more thorough overview of these efforts. A subset of these works26,27 specifically
sought to incorporate deep learning techniques into the security systems used by the Transportation Security
Administration (TSA) at U.S. airport checkpoints. In many settings, acquiring unlabeled data is significantly
easier than labeled data. For X-Ray baggage scanner threat detection settings, this is especially the case, as
acquiring labeled data often also requires assembling the threat-containing bags and scanning them. Thus,
semi-supervised approaches have drawn considerable interest as an efficient way to leverage more data. Another
approach is threat image projection (TIP), which digitally adds threat objects into a bag using various synthetic
methods,34 this is possible here due to the transmissive nature of X-ray, .

4. METHODS

4.1 Data

Consider two data-generating processes pSOC(x, y) and pHC(x, y), which model the appearance of objects, y =
{(c, b)}, in an image x. In this notation, the set y contains objects described by c, a categorical random variable
indicating class, and b ∈ R4 describing the coordinates of the object’s bounding box. Let DSOC be the set of
data samples from pSOC(x, y), and let DHC be the set of data samples from pHC(x, y). Data from pSOC(x, y)
are our Stream-of-Commerce (SOC) data, gathered from checkpoints, and are the target domain. Data from
pHC(x, y) are our “Hand-Collected” source domain data, which were collected by subcontractors staging threats
in realistic context during TSA Contract HSTS04-16-C-CT7020.26,27

By design, pSOC and pHC have a target shift between them. Namely, pSOC contains little to no threat objects,
pSOC(|y| > 0) = 0, and every image in pHC contains a threat object, pHC(|y| > 0) = 1. We can make the
following statements of target shift (Equation 3) and covariate shift (Equation 4):

pSOC(y) 6= pHC(y) (3)

pSOC(x|y) 6= pHC(x|y) (4)

We seek a method for learning an object detection model which addresses these disparities to more effectively
find threats in the target domain.

4.2 Supervised Auxiliary Negative Training

A näıve way to learn from the objectless images is to treat them identically as the labeled examples in the
training set. This implicitly treats all regions of the SOC images as background,35 and tends to not work in
practice. First, if the number of labeled images is small, adding too many unlabeled images dilutes the dataset,
resulting in a large class imbalance that may drown out the learning signal for positive samples. Down-weighting
negative samples emphasizes the learning signal for the actual objects of interest, but also reduces the value of
the unlabeled set. Hard negative mining, or the focal loss36 focus learning on the hardest background examples,
but makes the assumption that the unlabeled data is from the same distribution as labeled dataset.

In this specific case, DSOC and DHC have some inherent differences which we cast as covariate shift. We
hypothesize that these differences could include but not be limited to: idiosyncratic reconstruction noise on the
periphery of images, signatures from the individual laboratory prototypes used to stage threat data, or effects
from the close queuing of bags in scans which occurs in the real world and not in staged data collections. While
these might not seem like meaningful differences, a sufficiently expressive feature extractor can pick up on these
discrepancies and rapidly learn to suppress any detections in SOC images. While this reduces false positives, it
could reduce the model’s effectiveness when detecting threats in the real world, because it was only ever shown
real-world data without threats.
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Figure 2: Conceptual diagram included to demonstrate the intuition of this approach for anomaly/threat detection.
(a) Separation of threats and background when training with labeled data. (b) Application of the supervised learned
threat detector when applied to heterogenous real-world data. The set of “Real World Cluttering Objects” crosses over
the decision boundary to imply increased false alarm rates in the real world. (c) Using adversarial training for the feature
extractor to match the statistics of the backgrounds with the real-world data decreases false alarms while still learning
robust features.

We have conducted this experiment and have observed empirically that the Faster R-CNN model is able to
shatter metrics on the train and test SOC images. That is, while having some level of expected generalization
error when evaluated on the test set of hand-labeled data, the model can predict without any false alarms across
the test set of SOC data. These domain-dependent differences between the hand-collected data and the SOC are
not a problem when the object detection model is trained with only labeled data, possibly only slightly increasing
generalization error. However, they could be catastrophic if the model is allowed to learn to discriminate domains,
which occurs when using supervised learning on negative examples from the SOC.

4.3 Adversarial Training and Background Matching

Our proposed method, Background Adaptive Faster R-CNN (BA Faster R-CNN), is a training procedure applied
to the Faster R-CNN model,5 which selectively applies the unsupervised domain adaptive Faster R-CNN13 losses.
Its intended use is in an anomaly/threat detection situation, with two separate datasets, such as DHC and
DSOC. Images from both sets train the Faster R-CNN loss for threat detection, and images from both are
used simultaneously in adversarial domain adaptation. The method exposes the model to a wider variety of
backgrounds than those in DHC and through adversarial distribution matching, the CNN has barriers preventing
it from encoding which dataset each object proposal comes from based on image signatures unrelated to the
objects in a bag. A conceptual diagram is shown in Figure 2.

We will borrow previous notation13 to describe probability distributions of features which are part of the
Faster R-CNN algorithm. p(B, I) is a marginal probability distribution of features extracted from feature map
pixels I within bounding box B. p(I) is a marginal probability distribution of the extracted feature map pixel,
when each pixel is treated as an independent observation.

Extending previous work,13 we address a particular case of target shift between domains in addition to
covariate shift. As described in Equation 2, if we know the prior probability of labels in the target domain, we
can perform adversarial domain adaptation by matching target features with class-conditional source features,
weighted according to their incidence in the target domain. This requires matching the model distributions
q(B, I) and q(I) to their respective distribution of features in the target pSOC(B, I) and pSOC(I):

pSOC(B, I) = q(B, I) =
∑
c

pHC(B, I|c)pSOC(c) (5)

pSOC(I) = q(I) =
∑
c

pHC(I|c)pSOC(c) (6)

The class-conditional distributions of instance features p(B, I|c) and image features p(I|c) refer to features
corresponding to the locations of ground truth classes c, which can be one of many threat classes or background.



Under the assumption of no threats in the SOC, the class prior probability is one for background and zero for
any foreground class.

pSOC(c) =

{
1 c = background

0 otherwise
(7)

Substituting Equation 7 into Equations 5 and 6 gives:

pSOC(B, I) = pHC(B, I|c = background) (8)

pSOC(I) = pHC(I|c = background) (9)

Despite a target shift between the two domains, we can still build from previous techniques13 so long as we only
match the background portions of the hand-collected data to the SOC. We achieve background instance matching
(Equation 8) by first obtaining candidate object proposals in the standard way via Faster R-CNN. For object
proposals from DHC, we designate as background any proposal for which the Intersection Over Union (IOU)
with a ground truth threat object is below a certain threshold (in our experiments, 0.01). These background
proposals are fed to an adversarial domain discriminator for object instances, along with all proposals made from
DSOC.

For background image matching (Equation 9), we first anti-crop the features of images from DHC according
to the ground truth boxes of threats. By ”anti-cropping”, we mean masking out feature map pixels inside ground
truth bounding boxes. Only the labeled image feature map pixels corresponding to background are used to train
the adversarial pixel domain discriminator, alongside all of the feature map pixels from DSOC. A third domain
adaptation loss, a consistency regularization,13 enforces that the two domain classifiers predict the same domain.
This loss is implemented as the `2 distance between the domain classifier outputs for an image.

5. RESULTS

In this section we give results for the application of BA Faster R-CNN to images of threats in baggage. These
results are not meant to be compared across datasets, only within them. While each scan of a single bag produces
multiple views (each an image), we calculate precision/recall scores and mean Average Precision (mAP) on a
single-image basis, deliberately excluding the sizable impact that multiple views of a threat per bag has on
detection rates for simplicity. This impact is outside the scope of our paper; our purpose is to indicate results of
applying BA Faster R-CNN to the problem of threat detection in carry-on luggage. While we show here some
improvements in precision and recall of using BA Faster R-CNN on the labeled data collected in TSA Contract
HSTS04-16-C-CT7020, its real purpose is to improve generalization performance when tested on held-out images
from the SOC. Due to national security concerns and data sensitivity, we omit these results.

5.1 Datasets

Results in Section 5 were trained with datasets of over 6,000 labeled images for Dataset A and over 19,000 labeled
images for Dataset B. A training set of over 35,000 SOC images were used for Dataset A and over 70,000 SOC
images were used for Dataset B. Performance was evaluated with over 1,100 labeled images from each set, and
500 SOC images from each set were used as a representative sample to estimate false alarm rates.

5.2 Labeled Data Performance

For our performance metrics, we will show improvements in the precision/recall metric on a held out labeled set
of images from two different vendors, Dataset A and Dataset B. For our experiments, we used the Tensorflow
Object Detection implementation,37 which we extended for X-ray images and object detection domain-adaptive
components. All experiments were conducted with ResNet10130 as the feature extractor and Faster R-CNN5

as the meta-architecture. For all experiments, we use domain adaptive loss weighting13 λ = 0.1 and Gradient
Reversal Layer (GRL) weight11,13 0.1.

We ran three different experiments on each dataset. First, we trained a supervised Faster R-CNN baseline.
Then, we included only the instance loss component, which matches feature distributions of extracted proposals



as in Equation 8. Finally, we trained a model using instance losses and image losses. Image losses are used to
match the extracted feature pixel distributions, as in Equation 8. When both image and instance losses are used,
we also include the consistency loss.13

5.2.1 Dataset A

Dataset A saw performance increases for nearly all labeled data classes when evaluated on the held-out set.
These precision/recall metrics are graphed in Figure 3, and summarized in Table 1. Average Precision (AP) on
Knives data was only improved by using all three loss terms, while AP was the best for the LAGs class when
used with supervised learning.
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Figure 3: Precision/Recall for Dataset A, treating all views as independent images. The solid lines correspond to the
purely Supervised model, and the dashed lines correspond to Semi-Supervised use of BA Faster R-CNN when all three
domain-adaptive loss terms are applied. These results are summarized in Table 1

Loss term Threat Class
Model Version Instance Image Consistency Knives Blunts Guns LAGs

Faster R-CNN, Figure 3: (—) 0.832 0.989 0.931 0.980
+Match instances X 0.829 0.989 0.948 0.978
+Match instances and images, Figure 3: (– –) X X X 0.839 0.992 0.955 0.978

Table 1: Tabulated APs on labeled data from Dataset A.

5.2.2 Dataset B

Figure 4 shows precision/recall curves for the labeled held-out set from Dataset B. There was an increase in the
mAP metric for all labeled data classes using background domain adaptation. Guns and LAGs did slightly worse
using all three domain-adaptive losses than when only applied to instance losses.

Loss term Threat Class
Model Version Instance Image Consistency Knives Blunts Guns LAGs

Faster R-CNN, Figure 4: (—) 0.894 0.977 0.985 0.936
+Match instances X 0.908 0.980 0.987 0.956
+Match instances and images, Figure 4: (– –) X X X 0.914 0.982 0.986 0.951

Table 2: Tabulated APs on labeled data from Dataset B.
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Figure 4: Precision/Recall for Dataset B, treating all views as independent images. The solid lines correspond to the
purely Supervised model, and the dashed lines correspond to Semi-Supervised use of BA Faster R-CNN when all three
domain-adaptive loss terms are applied. These results are summarized in Table 2

6. CONCLUDING REMARKS

This paper describes Background Adaptive Faster R-CNN, a technique for using real-world unlabeled data to
improve threat detection in X-ray images. As in a typical Unsupervised Domain Adaptation (UDA) setup, two
datasets are used. The first of these is a source dataset, which is small and contains labeled examples of objects.
The second dataset is from our target domain, and contains many more images without labels. By matching the
class conditional feature distributions of the background in the labeled data to the marginal distribution in the
unlabeled data, we can use UDA techniques despite target shift between the two datasets.

This technique was required in order to use large quantities of real-world data because of the well-known
tendency of deep convolutional feature extractors to learn brittle features if these are enough to separate the
training data. In our case, this meant that with supervised use of large quantities of real-world SOC data, then
the feature extractor need only recognize that the image was from the SOC to achieve low losses. Instead, we
penalize the encoding of domain-specific information via two adversarial domain discriminators, which require
the model learn from cluttering objects in the SOC.

We demonstrate BA Faster R-CNN on two independently-collected datasets. In this application, the target
threat classes are guns, knives, blunt objects, and liquid, aerosols, or gels. For the X-ray baggage datasets that
we examine, we find that BA Faster R-CNN succeeds in improving precision/recall performance for most threat
classes in the labeled portion of the dataset. It is possible for BA Faster R-CNN to reduce false alarm rates in
the real world, but we omit such results here.
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