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Abstract

For the safety of the traveling public, the Transporta-
tion Security Administration (TSA) operates security check-
points at airports in the United States, seeking to keep dan-
gerous items off airplanes. At these checkpoints, the TSA
employs a fleet of X-ray scanners, such as the Rapiscan
620DV, so Transportation Security Officers (TSOs) can in-
spect the contents of carry-on possessions. However, identi-
fying and locating all potential threats can be a challenging
task. As a result, the TSA has taken a recent interest in deep
learning-based automated detection algorithms that can as-
sist TSOs. In a collaboration funded by the TSA, we col-
lected a sizable new dataset of X-ray scans with a diverse
set of threats in a wide array of contexts, trained several
deep convolutional object detection models, and integrated
such models into the Rapiscan 620DV, resulting in func-
tional prototypes capable of operating in real time. We show
performance of our models on held-out evaluation sets, an-
alyze several design parameters, and demonstrate the po-
tential of such systems for automated detection of threats
that can be found in airports.

1. Introduction
The Transportation Security Administration (TSA) over-

sees the safety of the traveling public in the United States
of America. One of the most visible functions of the TSA
is security screening of travelers and their personal belong-
ings for potential threats. Handsearching each passenger’s
bag would be both time-consuming and intrusive, so X-ray
scanner systems such as the Rapiscan 620DV are deployed
to remotely provide an interior view of baggage contents.
Many real threats are captured nationwide: in 2018, for
example, 4239 firearms were found in carry-on bags, and
more than 80% of these were loaded [36]. These numbers
have steadily grown in recent years as air traffic has contin-
ued to increase nationally. The capability of finding these

∗Correspondence to: kevin.liang@duke.edu

objects effectively is an important concern for national se-
curity.

Currently, the detection of prohibited items relies on
Transportation Security Officers (TSOs) to visually pick out
these items from displayed image scans. This is challeng-
ing for several reasons. First, the set of prohibited items
that TSOs must identify is quite diverse: firearms; sharp
instruments; blunt weapons; and liquids, aerosols, and
gels (LAGs) with volumes exceeding the TSA-established
thresholds all pose security concerns. Second, the majority
of scans are benign, yet TSOs must remain alert for long pe-
riods of time. Third, because X-ray scans are transmission
images, the contents of a bag appear stacked on top of each
other into a single, often cluttered scene, which can ren-
der identification of individual items difficult. The Rapis-
can 620DV provides dual perpendicular views to ameliorate
this problem, but depending on the orientations, views can
still be non-informative. Finally, given the need to maintain
passenger throughput, evaluation of a particular scan should
not take excessively long.

For the aforementioned reasons, an automatic threat de-
tection algorithm to aid human operators in locating prohib-
ited items would be useful for the TSA, especially if it can
be readily integrated into the existing fleet of deployed scan-
ners. Fundamentally, the TSOs both localize and identify
dangerous items in an image, which are the same objectives
of object detection [13, 12, 30, 24, 9, 17]. Object detection
has long been considered a challenging task for comput-
ers, but advances in deep learning [14] in recent years have
resulted in enormous progress. Specifically, Convolutional
Neural Networks (CNNs) [21] have proven extremely use-
ful at extracting learned features for a wide variety of com-
puter vision tasks, including object detection. As a result,
the TSA is interested in assessing the feasibility of deploy-
ing algorithms that can automatically highlight objects of
interest to TSOs [1].

Most deep learning methods require a large train-
ing dataset of labeled examples to achieve good perfor-
mance [33]; for object detection, this means data com-
prising both images and bounding boxes with class labels.
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Figure 1: Example scans of bags in false color containing a firearm (handgun), sharp (knife), blunt (crow bar), and LAG
(bottle of liquid), from the left to right, with (top row) top view and (bottom row) side view shown. Ground truth locations
of threats in each image are bounded with a red box. Scans produced by a laboratory prototype not in TSA configuration.

While many such datasets exist for Red-Green-Blue (RGB)
natural scenes (e.g. [11, 23, 8]), none contain threats in X-
ray luggage, and so a sizable data collection effort was nec-
essary for this endeavor. We assembled a large variety of
cluttered bags (e.g. clothing, electronics, etc.) with hidden
threats (firearms, sharps, blunts, LAGs), and scanned these
with the Rapiscan 620DV. Each threat in the scans was then
annotated with a tight bounding box and labeled according
to class. This dataset was then used for training and evalu-
ating object detection models.

In this work, we present the results of a research effort
in collaboration with the TSA to develop a deep learning-
based automated threat detection system. We first describe
the Rapiscan 620DV scanner and the data collection pro-
cess. We then introduce the deep learning algorithms we
used to perform object detection and how we integrated
them into a Rapiscan 620DV prototype, for live testing. Fi-
nally, we present experimental results on a number of mod-
els we tested on the collected data. The resulting prototype
system has shown great promise, and technology like this
may one day be deployed by the TSA to airports nationally.

2. Data Collection

2.1. Rapiscan 620DV X-Ray Scanning System

The Rapiscan 620DV X-ray screening system is de-
signed for aviation and high-security applications. It com-
prises a tunnel 640 mm wide and 430 mm high, equipped
with a 160 kV / 1 mA X-ray source that achieves a steel

penetration of 33mm and a wire resolution of about 80 mi-
crometers (40 American Wire Gauge). The scanner pro-
duces two views through the near-orthogonal orientation of
the fan-shaped beams from the X-ray sources. These pro-
jections generate a horizontal and vertical view of the object
under inspection, both of which can be used to identify the
contents of a bag. X-ray detectors collect both high and
low X-ray energy data, which allows for material discrimi-
nation. Examples are shown in Figure 1.

While it is possible to use the high and low energy im-
age scans as direct inputs to our model, we instead choose
to use the pre-processed RGB coloration typically shown to
human TSOs. This coloring uses the relationship between
the linear attenuation coefficient and photon energy to esti-
mate effective atomic number (Z), transforming the image
into one where material properties can be more readily in-
ferred: for example, organic materials tend to have low Z,
while metallic materials tend to have higher Z. Accord-
ing to Rapiscan’s proprietary coloring scheme, metallic ob-
jects are colored blue, organic materials are tinted orange,
and materials with effective Z (Zeff ) between these two
are shaded green. Using this false coloring as our input
achieves two objectives: (i) encoding of additional human
knowledge of material properties, which are highly infor-
mative for threat detection (firearms, sharps, and blunts,
for example, often contain metallic components) and (ii)
aligning the image input color distribution closer to the pre-
trained weights, which were trained on RGB natural scenes.
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Threat Type Total Threats Total Images

Blunts 10 3366
Firearms 43 (assembled) + 19 (disassembled) 3480

LAGs 70 3456
Sharps 40 3484

Table 1: Total number of unique threat items and number of
images collected for each threat.

2.2. Scan Collection and Annotation

Baggage scans were collected at various sites, occur-
ring over multiple collection events. This data collection
targeted several of the TSA’s designated threat categories:
firearms (e.g. pistols), sharps (e.g. knives), blunts (e.g.
hammers), and LAGs (e.g. liquid-filled bottles). A diverse
set of unique items from each class were selected to provide
coverage for each threat type; for example, the firearms set
included both assembled and disassembled guns. To simu-
late the diversity of real-world traffic, a variety of host bags
was used, including roller, laptop, and duffel bags. Each
was filled with diverse assortments of benign items, such
as clothing, shoes, electronics, hygiene products, and paper
products. Threats were added to each host bag in different
locations and orientations, as well as with imaginative con-
cealments, to simulate the actions of potentially malicious
actors. Under the assumption that threat objects are typi-
cally rare, most bags contained only one threat, as in the
examples shown in Figure 1.

Given the time-consuming nature of assembling bags for
scanning, a single bag was used to host different unique
threats for multiple scans, with a minor exchanging of be-
nign clutter between insertions. Each bag was also scanned
in several different poses (e.g. flipped or rotated). These
strategies allow for more efficient collection of more scans
and encourage our models to learn invariance to exact posi-
tioning within the tunnel. Total number of threats scanned
are summarized in Table 1.

After the scans were collected, each image was hand-
annotated by human labelers, where each label consisted of
both the threat class-type, as well as the coordinates of the
bounding box. Each box was specified to be as tight as pos-
sible in each view, while still containing the full object; in
the case of objects like sharps and blunts, this definition in-
cluded the handle, for instances in which there was one. In
total, the entire data collection effort of assembling, scan-
ning, and labeling bags took over 400 worker hours.

3. Methods

3.1. Convolutional Neural Networks

The advent of deep convolutional neural networks
(CNNs) [21] has resulted in a quantum leap in the field of

CNN Architecture Top-1 Accuracy Number of parameters

Inception V2 [18] 73.9 10.2 M
ResNet-101 [15] 77.0 42.6 M
ResNet-152 [15] 77.8 58.1 M

Inception ResNet V2 [34] 80.4 54.3 M

Table 2: ImageNet classification accuracy and number of
parameters for each of the CNNs architectures considered
in our experiments. Adapted from [17].

computer vision. Across virtually all computer vision tasks,
the incorporation of CNNs into model designs has resulted
in significant performance gains; consequently, CNNs play
a significant role in almost every recent computer vision
algorithm. Unlike classical methods that rely upon care-
fully selected, human-engineered features, machine learn-
ing (and deep learning) methods learn these features from
the data itself. CNNs in particular are designed to learn
hierarchical representations [38], resulting in a feature ex-
tractor that produces highly informative, abstract encodings
that can be used for downstream tasks, such as classifi-
cation [19]. Additionally, the learned visual features are
highly transferable: for example, CNN weights learned for
the classification task of ImageNet [10] can serve as a good
initialization for other datasets or even other related com-
puter vision tasks [37, 28, 13]. Doing so can consider-
ably reduce the number of training examples needed for
the desired task. In the setting of automatic threat detec-
tion at TSA checkpoints, this is especially significant, as we
must assemble, scan, and label each training sample our-
selves; pre-trained networks allow us to significantly cut
down man-hours and costs.

There are several design considerations for CNNs. Most
obvious is model performance: how good are the features
the CNN extracts for the downstream task? In general, there
is a positive correlation between the number of CNN layers
(depth) and parameters with overall performance [32, 15],
though architectural choices can play a significant role as
well [39]. However, finite hardware memory and processing
time limit model size. We consider several popular CNN
architectures in our experiments, summarized in Table 2.

3.2. Object Detection

Localizing and classifying objects in a scene is a canon-
ical research area in computer vision. In this context, local-
ization refers to the production of a bounding box which is
as tight as possible while still containing the entire object,
while classification is the identification of which of a pre-
determined set of classes the object belongs to. Formally,
given an image X , the goal of object detection is to predict
the class ci of each object indexed by i, as well as the center
and dimensions (xi, yi, wi, hi) of a bounding box.

Modern object detectors are almost exclusively built
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Figure 2: Diagram of the prototype Rapiscan 620DV X-ray screening system with threat recognition capability. Dual-energy
X-Ray information yields false-color images of two views, which are fed to a trained deep convolutional object detector.
Detections above threshold are displayed for the user. Scans produced by a laboratory prototype not in TSA configuration.

upon CNN backbones. The specific CNN architecture used
is often readily interchangeable, with the choice of CNN
depending on the trade-off between accuracy with speed
and memory. How predictions are made from the features
extracted by the CNN can vary, and various object detec-
tion meta-architectures [17] have been recently proposed,
of which we highlight two notable ones here.

Faster R-CNN: Faster R-CNN [30] makes predictions
in a two-stage process. In first stage, called the Region Pro-
posal Network (RPN), a set of reference boxes of various
sizes and dimensions (termed anchor boxes) are tiled over
the entire image. Using features extracted by a CNN, the
RPN assigns an “objectness” score to each anchor based on
how much it overlaps with a ground-truth object, as well as
a proposal of how each anchor box should be adjusted to
better bound the object. The Np box proposals with high-
est objectness scores are then passed to the second stage,
where Np is a hyperparameter controlling the number of
proposals. In the second stage, a classifier and box refine-
ment regressor yield final output predictions. Non-maximal
suppression reduces duplicate detections.

Single Shot MultiBox Detector (SSD): Unlike Faster
R-CNN, which performs classification and bounding box
regression twice, Single-stage detectors like SSD [24] com-
bine both stages. This eliminates the proposal stage to di-
rectly predict both classes and bounding boxes at once. This
reduction tends to make the network much faster, though
sometimes at the cost of accuracy.

3.3. Evaluation

The two-part nature of the object detection task–
localization and classification–requires evaluation metrics

that assess both aspects of detections. The quality of an
algorithm-produced predicted box (Bp) with a ground-truth
bounding box (Bgt) is formalized as the Intersection over
Union (IoU) = area(Bp ∩Bgt)/area(Bp ∪Bgt).

A true positive (Tp), false positive (Fp), and false nega-
tive (Fn) are defined in terms of the IoU of a predicted box
with a ground-truth box, as well as the class prediction. A
true positive proposal is a correctly classified box that has
an IoU above a set threshold (e.g. 0.5), a false positive pro-
posal either misclassifies an object or does not achieve a
sufficiently high IoU, and a false negative is a ground-truth
object that was not properly bounded (with respect to IoU)
and correctly classified.

At a particular IoU threshold, the precision and recall
of the model may be computed as the proportion of pro-
posed bounding boxes that are correct and the proportion
of ground truth objects that are correctly detected, respec-
tively. These quantities are: Precision = Tp/(Tp + Fp),
Recall = Tp/(Tp + Fn). Precision-recall (PR) curves are
constructed by plotting both quantities over a range of oper-
ating point thresholds. We present these curves in Section 5
to provide a sense for model performance. Additionally, we
may quantitatively summarize model performance through
mean Average Precision (mAP). Average Precision (AP) is
the area-under-the-curve (AUC) of the PR curve for a single
class, and mAP is the mean of the APs across all classes.

3.4. Rapiscan 620DV Integration

In order to take a concrete step towards the TSA’s goal
of potentially deploying the deep learning-based automated
threat detector, we also worked to integrate the algorithm
with the Rapiscan 620DV. The Rapiscan 620DV has an on-
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Model Speed (s/scan) mAP Sharps Blunts Firearms LAGs

SSD-InceptionV2 0.042 0.7523 0.408 0.918 0.757 0.907
Faster-RCNN-ResNet101 0.222 0.9166 0.766 0.976 0.944 0.973
Faster-RCNN-ResNet152 0.254 0.9244 0.786 0.980 0.947 0.976

Faster-RCNN-InceptionResNetV2 0.812 0.9410 0.818 0.983 0.962 0.985

Table 3: Inference speed and mAP of the considered feature extractor and meta-architecture combinations. Timing measured
on a Nvidia GeForce GTX 1080 Graphical Processing Unit (GPU).

board computer and monitors to construct and display im-
ages from the output of the X-ray photon detectors, as well
as algorithms for explosives detection. We wish to leave
these functionalities untouched, simply overlaying an addi-
tional detection output on screen. Therefore, we pipe the
constructed scan images to our model, perform inference,
and project the predictions to the display (see Figure 2).

To achieve threat recognition, we export a trained model
and run it in parallel with existing software. The system
computer hardware was upgraded to an Intel i7 CPU and
a Nvidia GeForce GTX 1080 GPU in order to support the
TensorFlow [2] implementation of the model graph. This
allows for a single integrated machine to perform all of the
computation for the 620DV, unlike previous implementa-
tions that require an additional auxiliary machine to perform
the deep neural network computation [22]. While the re-
sulting integrated system has been used for live demos, the
experimental results we report in this paper were computed
with a held-out test set.

4. Related Work
The development of computer-aided screening for avi-

ation security has garnered much attention in the past two
decades. We focus here specifically on efforts to locate and
classify potential threats in X-ray images.

Initial work using machine learning to classify objects in
X-ray images leveraged hand-crafted features fed to a tradi-
tional classifier such as a Support Vector Machine (SVM).
In particular, [7] used Bag-of-Visual-Words (BoVW) and
an SVM to classify X-ray baggage with feature representa-
tions such as Difference of Gaussians (DoG) in conjuction
with scale-invariant feature transform (SIFT) [25]. Further
BoVW approaches are used for classification in [35], [6],
[26], [20].

While deep learning has been applied to general image
analysis for at least a decade, its adoption for X-ray se-
curity image analysis is relatively recent. Still, there are
several works that apply deep learning to baggage screen-
ing. In [31], the authors provide a review of methods for
automating X-ray image analysis for cargo and baggage
security, pointing to the use of CNNs as a promising di-
rection. The first application of deep learning to an X-

ray baggage screening context was for classifying manu-
ally cropped regions of X-ray baggage images that con-
tained different classes of firearms and knives, with addi-
tional benign classes of camera and laptop [4]. To per-
form classification, [4] fine-tuned a pre-trained CNN to
their unique datasets, leveraging transfer learning to im-
prove training with a limited number of images compared
to the size of datasets that CNNs are typically trained on. In
[4], the authors compare their classification performance to
the BoVW methods mentioned above.

The work of [4] is extended in [3, 5] to examine the
use of deep object detection algorithms for X-ray baggage
scans. The authors address two related problems: binary
identification of objects as firearms or not and a multi-
class problem using the same classes as [4]. They expand
the CNN classification architectures investigated to include
VGG [32] and ResNet [15], and they further adapt Faster
R-CNN [30], R-FCN [9], and YOLOv2 [29] as CNN-based
detection methods to X-ray baggage. However, these exper-
iments were done in simulation on pre-collected datasets,
without any integration into the scanner hardware. They
also do not take advantage of the X-ray scanner’s multiple
views.

Concurrent with this work, the TSA has sought to incor-
porate deep learning systems at U.S. airport security check-
points in other efforts. In [22], the authors present data col-
lection efforts for firearms and sharps classes and compare
the performance of five object detection models. Relative
to [22], we also include blunt weapons and LAGs cate-
gories, and we train a single four-class detector, rather than
training an individual detector for each category.

5. Experiments
For our experiments and in-system implementation, we

use Google’s code base [17] of object detection models, im-
plemented in TensorFlow [2]. We initialize each model with
pre-trained weights from the MSCOCO Object Detection
Challenge [23] and then fine-tune them to detect each of
the target classes (firearms, sharps, blunts, LAGs) simulta-
neously, which allows us to perform detection four times as
fast as if we trained a separate algorithm for each. Since
we initialize with weights pre-trained on MSCOCO, we
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Figure 3: PR curves for four meta-architecture/feature extractor combinations. (a) Sharps, (b) Blunts (c) Firearms (d) LAGs.
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Figure 4: (a) Heatmap indicating density of bounding box dimensions for the training set. Various anchor box distributions
are shown; each color indicates a different anchor box experimental setting. Natural image defaults in blue. (b) Precision-
recall curves for default anchor boxes and engineered set on sharps. Colors correspond to the distributions shown in (a).

pre-process each image by subtracting from each pixel the
channel-means of the MSCOCO dataset; this aligns our pre-
processing with that performed on images for the MSCOCO
Challenge.

For all Faster R-CNN algorithms, we use a momentum
optimizer [27] with a learning rate of 0.003 for 130,000
steps, reducing it by a factor of 10 for 40,000 steps, and
reducing by another factor of 10 for a final 30,000 steps.
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Figure 5: Precision-recall comparison of single view (blue) versus with multi-view (orange) detection for (a) sharps (c) blunts
(c) firearms (d) LAGs . Note that the multi-view graphs shown here are a choice of analysis, and not a different technique.
The training and inference of Faster R-CNN are the same in both traces.

For the SSD model, we used 200,000 steps of an RMSprop
optimizer [16] with an exponential decay learning rate start-
ing at 0.003, and decaying by 0.9 every 4000 steps. During
training, a batch size of 1 was used for all Faster R-CNN
models, and a batch size of 24 was used for SSD.

From the 13, 786 images collected, we create a
70/10/20 train-validation-test split, which we use for all
experiments. We take care to ensure the two images (views)
of a particular bag remain in the same split.

5.1. Feature Extractor and Meta-architecture

As discussed in Section 3, there are many options
for both CNN feature extractor and the object detection
meta-architecture, each with its own advantages and dis-
advantages. See [17] for extensive comparisons on MS
COCO [23]. For the collected X-ray scan dataset, we
choose to analyze several high-performing combinations.
Detection performance is measured in terms of AP for each
of the classes of interest, and mAP for overall performance
is also calculated. We also measure processing time per
scan to project practical passenger wait times.

We summarize the results in Table 3 and Figure 3. Over-
all, Faster R-CNN with Inception ResNet V2 has the highest
mAP, while SSD with Inception V2 performed the worst. In
general, faster models are less accurate, which may be seen
in the “Speed” column of Table 3. Faster R-CNN with the
two smaller feature extractors (ResNet101 and ResNet152)
achieve nearly the same performance on sharps as ResNet
Inception V2, but at more than three times the speed. While
the speed of single-stage models is suitable for video frame
rates, we found this to be unnecessary for checkpoint threat
recognition and to sacrifice too much accuracy.

5.2. Anchor Boxes

As discussed in Section 3.2, bounding box predictions
are typically made relative to anchor boxes tiled over the
image. The object detection algorithms we have considered
were primarily designed for finding common objects (e.g.

Threat Single View AP Multiple Views AP
Sharps 0.786 0.935
Blunts 0.980 0.995

Firearms 0.947 0.984
LAGs 0.976 0.994

Table 4: Single View vs. Effective Multiple View APs.

people, animals, vehicles) in natural scenes, with datasets
like PASCAL VOC [11] or MS COCO [23] in mind.

The anchor box distribution is commonly held to act as a
kind of “prior” over the training data. In YOLO V2 [29],
anchors are learned by k-means clustering, and some of
the performance gains of this model are credited to this
improvement. We chose several configurations of anchor
boxes to better match the distribution of our training data,
and display those configurations alongside training dataset
bounding box dimension density in Figure 4a. The dataset
used for these experiments was smaller than the dataset used
for the main findings as described in Table 1. Training, test,
and validation sets were drawn from a pool of images con-
taining 2768 Sharps, 1788 LAGs, 1800 Blunts, and 3080
Firearms. This does not impact our conclusions stated in
the next paragraph.

During model validation, some of these configurations
showed modest gains for sharps, but these did not general-
ize during testing. The sharps class PR curves for the anchor
box distributions in 4a are shown in 4b. We find that perfor-
mance is robust to different anchor configurations, showing
that even with a different box size distribution, Faster R-
CNN is able to learn accurate bounding box regressors.

6. Discussion
The results we have shown bear implications for a pi-

lot real-world deployment of this technology. In Table 3,
we showed test AP on sharps and timing for four feature
extractor/meta-architecture pairs. In a possible real-world
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(a) (b) (c)

(d) (e) (f)

Figure 6: Sample detections from the Faster R-CNN model with ResNet152 as the feature extractor. Ground truth bounding
boxes are shown in red. (a-b) Sharp detection. (c-d) Firearm detection. (e) Blunt weapon detection. (f) LAG detection.
The color of predicted box and the label indicate the predicted class. Scans produced by a laboratory prototype not in TSA
configuration.

system, we strive for inference rates which would not im-
pact screening time and security checkpoint throughput.
Because of the long evaluation time of the Faster R-CNN
with InceptionV2 model (∼ 800 ms seconds per bag), we
recommend use of Faster R-CNN with ResNet152 (∼ 250
ms per bag) for its performance/speed tradeoff. For the
remainder of the Discussion section, we will show results
only from this model.

6.1. Multiple View Redundancy

Unlike typical object detection research benchmarks, the
Rapiscan 620DV provides two views along nearly perpen-
dicular axes of the same scanned object. Within the context
of threat detection in X-ray images, this is especially impor-
tant, as individual views may occasionally be uninformative
due to perspective or clutter. Leveraging the two separate
views can improve overall performance.

In order to account for the multiple views, we consider a
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true positive in any view to be a true positive in all views.
False positives are added independently across all views.
Note that this is not describing a change to the training of
the algorithm, nor the inference process. Rather, by per-
forming our analysis in this way, we hope to better represent
how the system might work in a potential real-world deploy-
ment, when both views are available to a TSO. We show the
improvements in PR between single-view and multi-view
evaluation in Figure 5 and summarize the AP in Table 4.

6.2. Sample Detections

In Figure 6, we display selected detections from the fully
trained Faster R-CNN with ResNet152 as the feature extrac-
tor, for a number of threat classes.

In Subfigures (6a-6b), we display two views of the same
scan. The very small profile of the folding knife in one view
(6b) makes detection challenging for the trained object de-
tector (though there is a low-confidence false alarm). How-
ever, the knife presents a more clear profile in Subfigure 6a,
and is detected there. This motivates what we call “multi-
view” analysis, which we discuss further in Section 6.1.

Subfigure 6e shows a blunt threat which is detected
twice. The larger detection, which encompasses the head
and handle of a hammer, is a true positive, because the
IoU of this detection is greater than 0.5. The other detec-
tion in this image, however, only covers the hammer’s head.
While the presence of the hammer merits an alarm, the de-
tection does not overlap enough with the ground truth, and
is therefore a false positive. Some of the training data in-
cluded hammer heads disconnected from a handle. It may
be harder for the CNN to learn to bound hammers with han-
dles or hammer heads only.

To demonstrate detections of the remaining threat classes
Subfigure 6f shows a detected LAG, and Subfigures 6c and
6d show scans with firearms. Note that the machine pistol
in Subfigure 6d is not as well localized, compared to the
firearm in 6c, likely due to the obscuring presence of a lap-
top. However, such an alarm still makes the threat readily
visible to a human operator.

7. Conclusion

We have investigated use of state-of-the-art techniques
for the challenging task of threat detection in bags at air-
port security checkpoints. First, we collected a significant
amount of data, assembling by hand many bags and bins
which simulate everyday traffic. These concealed a wide
variety of threats. We scanned each bag to produce X-ray
images, and annotated both views of the scan. We then
trained multiple modern object detection algorithms on the
collected data, exploring a number of settings and engineer-
ing them for the task at hand. We have presented the results
of evaluating the model on held-out validation and test data.

In general, we do not find single stage methods to be
accurate enough as a security screening method, and their
frame rate advantages are superfluous in this application.
There are variants of the Faster R-CNN which can run
on commercially available computer hardware, and still
achieve accurate threat recognition.

In addition to the evaluation presented in Section 5, the
TSA has also tested prototype Rapiscan 620DV systems
with directly integrated trained models. These results have
shown the promise of deep learning methods for automatic
threat recognition. Further, they illustrate that the TSA, us-
ing X-ray scanners such as the Rapiscan 620DV, has the
capability to bring these new technologies to airport check-
points in the near future.
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