
Kernel-Based Approaches for Sequence Modeling:
Connections to Neural Methods

Kevin J Liang∗ Guoyin Wang∗ Yitong Li Ricardo Henao Lawrence Carin
Department of Electrical and Computer Engineering

Duke University
{kevin.liang, guoyin.wang, yitong.li, ricardo.henao, lcarin}@duke.edu

Abstract

We investigate time-dependent data analysis from the perspective of recurrent
kernel machines, from which models with hidden units and gated memory cells
arise naturally. By considering dynamic gating of the memory cell, a model closely
related to the long short-term memory (LSTM) recurrent neural network is derived.
Extending this setup to n-gram filters, the convolutional neural network (CNN),
Gated CNN, and recurrent additive network (RAN) are also recovered as special
cases. Our analysis provides a new perspective on the LSTM, while also extending
it to n-gram convolutional filters. Experiments1 are performed on natural language
processing tasks and on analysis of local field potentials (neuroscience). We
demonstrate that the variants we derive from kernels perform on par or even better
than traditional neural methods. For the neuroscience application, the new models
demonstrate significant improvements relative to the prior state of the art.

1 Introduction
There has been significant recent effort directed at connecting deep learning to kernel machines
[1, 5, 23, 36]. Specifically, it has been recognized that a deep neural network may be viewed as
constituting a feature mapping x→ ϕθ(x), for input data x ∈ Rm. The nonlinear function ϕθ(x),
with model parameters θ, has an output that corresponds to a d-dimensional feature vector; ϕθ(x)
may be viewed as a mapping of x to a Hilbert space H, where H ⊂ Rd. The final layer of deep
neural networks typically corresponds to an inner product ωᵀϕθ(x), with weight vector ω ∈ H; for
a vector output, there are multiple ω, with ωᵀ

i ϕθ(x) defining the i-th component of the output. For
example, in a deep convolutional neural network (CNN) [19], ϕθ(x) is a function defined by the
multiple convolutional layers, the output of which is a d-dimensional feature map; ω represents the
fully-connected layer that imposes inner products on the feature map. Learning ω and θ, i.e., the
cumulative neural network parameters, may be interpreted as learning within a reproducing kernel
Hilbert space (RKHS) [4], with ω the function inH; ϕθ(x) represents the mapping from the space of
the input x toH, with associated kernel kθ(x, x′) = ϕθ(x)ᵀϕθ(x

′), where x′ is another input.

Insights garnered about neural networks from the perspective of kernel machines provide valuable
theoretical underpinnings, helping to explain why such models work well in practice. As an example,
the RKHS perspective helps explain invariance and stability of deep models, as a consequence of
the smoothness properties of an appropriate RKHS to variations in the input x [5, 23]. Further, such
insights provide the opportunity for the development of new models.

Most prior research on connecting neural networks to kernel machines has assumed a single input x,
e.g., image analysis in the context of a CNN [1, 5, 23]. However, the recurrent neural network (RNN)
has also received renewed interest for analysis of sequential data. For example, long short-term

∗These authors contributed equally to this work.
1Implementations can be found at https://github.com/kevinjliang/kernels2rnns.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

https://github.com/kevinjliang/kernels2rnns


memory (LSTM) [15, 13] and the gated recurrent unit (GRU) [9] have become fundamental elements
in many natural language processing (NLP) pipelines [16, 9, 12]. In this context, a sequence of
data vectors (. . . , xt−1, xt, xt+1, . . . ) is analyzed, and the aforementioned single-input models are
inappropriate.

In this paper, we extend to recurrent neural networks (RNNs) the concept of analyzing neural
networks from the perspective of kernel machines. Leveraging recent work on recurrent kernel
machines (RKMs) for sequential data [14], we make new connections between RKMs and RNNs,
showing how RNNs may be constructed in terms of recurrent kernel machines, using simple filters.
We demonstrate that these recurrent kernel machines are composed of a memory cell that is updated
sequentially as new data come in, as well as in terms of a (distinct) hidden unit. A recurrent model
that employs a memory cell and a hidden unit evokes ideas from the LSTM. However, within the
recurrent kernel machine representation of a basic RNN, the rate at which memory fades with time
is fixed. To impose adaptivity within the recurrent kernel machine, we introduce adaptive gating
elements on the updated and prior components of the memory cell, and we also impose a gating
network on the output of the model. We demonstrate that the result of this refinement of the recurrent
kernel machine is a model closely related to the LSTM, providing new insights on the LSTM and its
connection to kernel machines.

Continuing with this framework, we also introduce new concepts to models of the LSTM type. The
refined LSTM framework may be viewed as convolving learned filters across the input sequence and
using the convolutional output to constitute the time-dependent memory cell. Multiple filters, possibly
of different temporal lengths, can be utilized, like in the CNN. One recovers the CNN [18, 37, 17]
and Gated CNN [10] models of sequential data as special cases, by turning off elements of the new
LSTM setup. From another perspective, we demonstrate that the new LSTM-like model may be
viewed as introducing gated memory cells and feedback to a CNN model of sequential data.

In addition to developing the aforementioned models for sequential data, we demonstrate them in an
extensive set of experiments, focusing on applications in natural language processing (NLP) and in
analysis of multi-channel, time-dependent local field potential (LFP) recordings from mouse brains.
Concerning the latter, we demonstrate marked improvements in performance of the proposed methods
relative to recently-developed alternative approaches [22].

2 Recurrent Kernel Network
Consider a sequence of vectors (. . . , xt−1, xt, xt+1, . . . ), with xt ∈ Rm. For a language model, xt
is the embedding vector for the t-th word wt in a sequence of words. To model this sequence, we
introduce yt = Uht, with the recurrent hidden variable satisfying

ht = f(W (x)xt +W (h)ht−1 + b) (1)

where ht ∈ Rd, U ∈ RV×d, W (x) ∈ Rd×m, W (h) ∈ Rd×d, and b ∈ Rd. In the context of a language
model, the vector yt ∈ RV may be fed into a nonlinear function to predict the next word wt+1 in the
sequence. Specifically, the probability that wt+1 corresponds to i ∈ {1, . . . , V } in a vocabulary of V
words is defined by element i of vector Softmax(yt + β), with bias β ∈ RV . In classification, such
as the LFP-analysis example in Section 6, V is the number of classes under consideration.

We constitute the factorization U = AE, where A ∈ RV×j and E ∈ Rj×d, often with j � V .
Hence, we may write yt = Ah′t, with h′t = Eht; the columns of A may be viewed as time-invariant
factor loadings, and h′t represents a vector of dynamic factor scores. Let zt = [xt, ht−1] represent a
column vector corresponding to the concatenation of xt and ht−1; then ht = f(W (z)zt + b) where
W (z) = [W (x),W (h)] ∈ Rd×(d+m). Computation of Eht corresponds to inner products of the
rows of E with the vector ht. Let ei ∈ Rd be a column vector, with elements corresponding to row
i ∈ {1, . . . , j} of E. Then component i of h′t is

h′i,t = eᵀi ht = eᵀi f(W (z)zt + b) (2)

We view f(W (z)zt + b) as mapping zt into a RKHSH, and vector ei is also assumed to reside within
H. We consequently assume

ei = f(W (z)z̃i + b) (3)

2



(a) (b) (c)

Figure 1: a) A traditional recurrent neural network (RNN), with the factorization U = AE. b) A
recurrent kernel machine (RKM), with an implicit hidden state and recurrence through recursion. c)
The recurrent kernel machine expressed in terms of a memory cell.

where z̃i = [x̃i, h̃0]. Note that here h̃0 also depends on index i, which we omit for simplicity; as
discussed below, x̃i will play the primary role when performing computations.

eᵀi ht = eᵀi f(W (z)zt + b) = f(W (z)z̃i + b)ᵀf(W (z)zt + b) = kθ(z̃i, zt) (4)

where kθ(z̃i, zt) = h(z̃i)
ᵀh(zt) is a Mercer kernel [29]. Particular kernel choices correspond to

different functions f(W (z)zt+ b), and θ is meant to represent kernel parameters that may be adjusted.

We initially focus on kernels of the form kθ(z̃, zt) = qθ(z̃
ᵀzt) = h̃ᵀ1ht,

2 where qθ(·) is a function of
parameters θ, ht = h(zt), and h̃1 is the implicit latent vector associated with the inner product, i.e.,
h̃1 = f(W (x)x̃+W (h)h̃0 + b). As discussed below, we will not need to explicitly evaluate ht or h̃1
to evaluate the kernel, taking advantage of the recursive relationship in (1). In fact, depending on
the choice of qθ(·), the hidden vectors may even be infinite-dimensional. However, because of the
relationship qθ(z̃ᵀzt) = h̃ᵀ1ht, for rigorous analysis qθ(·) should satisfy Mercer’s condition [11, 29].

The vectors (h̃1, h̃0, h̃−1, . . . ) are assumed to satisfy the same recurrence setup as (1), with each
vector in the associated sequence (x̃t, x̃t−1, . . . ) assumed to be the same x̃i at each time, i.e.,
associated with ei, (x̃t, x̃t−1, . . . ) → (x̃i, x̃i, . . . ). Stepping backwards in time three steps, for
example, one may show

kθ(z̃i, zt) = qθ[x̃
ᵀ
i xt + qθ[x̃

ᵀ
i xt−1 + qθ[x̃

ᵀ
i xt−2 + qθ[x̃

ᵀ
i xt−3 + h̃ᵀ−4ht−4]]]] (5)

The inner product h̃ᵀ−4ht−4 encapsulates contributions for all times further backwards, and for a
sequence of length N , h̃ᵀ−Nht−N plays a role analogous to a bias. As discussed below, for stability
the repeated application of qθ(·) yields diminishing (fading) contributions from terms earlier in time,
and therefore for large N the impact of h̃ᵀ−Nht−N on kθ(z̃i, zt) is small.

The overall model may be expressed as

h′t = qθ(ct) , ct = c̃t + qθ(ct−1) , c̃t = X̃xt (6)

where ct ∈ Rj is a memory cell at time t, row i of X̃ corresponds to x̃ᵀi , and qθ(ct) operates pointwise
on the components of ct (see Figure 1). At the start of the sequence of length N , qθ(ct−N ) may be
seen as a vector of biases, effectively corresponding to h̃ᵀNht−N ; we henceforth omit discussion of
this initial bias for notational simplicity, and because for sufficiently large N its impact on h′t is small.

Note that via the recursive process by which ct is evaluated in (6), the kernel evaluations reflected
by qθ(ct) are defined entirely by the elements of the sequence (c̃t, c̃t−1, c̃t−2, . . . ). Let c̃i,t repre-
sent the i-th component in vector c̃t, and define x≤t = (xt, xt−1, xt−2, . . . ). Then the sequence
(c̃i,t, c̃i,t−1, c̃i,t−2, . . . ) is specified by convolving in time x̃i with x≤t, denoted x̃i ∗ x≤t. Hence, the
j components of the sequence (c̃t, c̃t−1, c̃t−2, . . . ) are completely specified by convolving x≤t with
each of the j filters, x̃i, i ∈ {1, . . . , j}, i.e., taking an inner product of x̃i with the vector in x≤t at
each time point.

In (4) we represented h′i,t = qθ(ci,t) as h′i,t = kθ(z̃i, zt); now, because of the recursive form of the
model in (1), and because of the assumption kθ(z̃i, zt) = qθ(z̃

ᵀ
i zt), we have demonstrated that we

2One may also design recurrent kernels of the form kθ(z̃, zt) = qθ(‖z̃− zt‖22) [14], as for a Gaussian kernel,
but if vectors xt and filters x̃i are normalized (e.g., xᵀtxt = x̃ᵀi x̃i = 1), then qθ(‖z̃−zt‖22) reduces to qθ(z̃ᵀzt).

3



may express the kernel equivalently as kθ(x̃i ∗ x≤t), to underscore that it is defined entirely by the
elements at the output of the convolution x̃i ∗ x≤t. Hence, we may express component i of h′t as
h′i,t = kθ(x̃i ∗ x≤t).

Component l ∈ {1, . . . , V } of yt = Ah′t may be expressed

yl,t =

j∑
i=1

Al,ikθ(x̃i ∗ x≤t) (7)

where Al,i represents component (l, i) of matrix A. Considering (7), the connection of an RNN to an
RKHS is clear, as made explicit by the kernel kθ(x̃i ∗ x≤t). The RKHS is manifested for the final
output yt, with the hidden ht now absorbed within the kernel, via the inner product (4). The feedback
imposed via latent vector ht is constituted via update of the memory cell ct = c̃t + qθ(ct−1) used to
evaluate the kernel.

Rather than evaluating yt as in (7), it will prove convenient to return to (6). Specifically, we may
consider modifying (6) by injecting further feedback via h′t, augmenting (6) as

h′t = qθ(ct) , ct = c̃t + qθ(ct−1) , c̃t = X̃xt + H̃h′t−1 (8)

where H̃ ∈ Rj×j , and recalling yt = Ah′t (see Figure 2a for illustration). In (8) the input to the
kernel is dependent on the input elements (xt, xt−1, . . . ) and is now also a function of the kernel
outputs at the previous time, via h′t−1. However, note that h′t is still specified entirely by the elements
of x̃i ∗ x≤t, for i ∈ {1, . . . , j}.

3 Choice of Recurrent Kernels & Introduction of Gating Networks
3.1 Fixed kernel parameters & time-invariant memory-cell gating
The function qθ(·) discussed above may take several forms, the simplest of which is a linear kernel,
with which (8) takes the form

h′t = ct , ct = σ2
i c̃t + σ2

fct−1 , c̃t = X̃xt + H̃h′t−1 (9)

where σ2
i and σ2

f (using analogous notation from [14]) are scalars, with σ2
f < 1 for stability. The

scalars σ2
i and σ2

f may be viewed as static (i.e., time-invariant) gating elements, with σ2
i controlling

weighting on the new input element to the memory cell, and σ2
f controlling how much of the prior

memory unit is retained; given σ2
f < 1, this means information from previous time steps tends to

fade away and over time is largely forgotten. However, such a kernel leads to time-invariant decay
of memory: the contribution c̃t−N from N steps before to the current memory ct is (σiσ

N
f )2c̃t−N ,

meaning that it decays at a constant exponential rate. Because the information contained at each time
step can vary, this can be problematic. This suggests augmenting the model, with time-varying gating
weights, with memory-component dependence on the weights, which we consider below.

3.2 Dynamic gating networks & LSTM-like model
Recent work has shown that dynamic gating can be seen as making a recurrent network quasi-invariant
to temporal warpings [30]. Motivated by the form of the model in (9) then, it is natural to impose
dynamic versions of σ2

i and σ2
f ; we also introduce dynamic gating at the output of the hidden vector.

This yields the model:

h′t = ot � ct , ct = ηt � c̃t + ft � ct−1 , c̃t = Wcz
′
t (10)

ot = σ(Woz
′
t + bo) , ηt = σ(Wηz

′
t + bη) , ft = σ(Wfz

′
t + bf ) (11)

where z′t = [xt, h
′
t−1], and Wc encapsulates X̃ and H̃ . In (10)-(11) the symbol � represents a

pointwise vector product (Hadamard); Wc, Wo, Wη and Wf are weight matrices; bo, bη and bf are
bias vectors; and σ(α) = 1/(1 + exp(−α)). In (10), ηt and ft play dynamic counterparts to σ2

i and
σ2
f , respectively. Further, ot, ηt and ft are vectors, constituting vector-component-dependent gating.

Note that starting from a recurrent kernel machine, we have thus derived a model closely resembling
the LSTM. We call this model RKM-LSTM (see Figure 2).

Concerning the update of the hidden state, h′t = ot � ct in (10), one may also consider appending a
hyperbolic-tangent tanh nonlinearity: h′t = ot � tanh(ct). However, recent research has suggested

4



(a) (b)

Figure 2: a) Recurrent kernel machine, with feedback, as defined in (8). b) Making a linear kernel
assumption and adding input, forget, and output gating, this model becomes the RKM-LSTM.

not using such a nonlinearity [20, 10, 7], and this is a natural consequence of our recurrent kernel
analysis. Using h′t = ot � tanh(ct), the model in (10) and (11) is in the form of the LSTM, except
without the nonlinearity imposed on the memory cell c̃t, while in the LSTM a tanh nonlinearity (and
biases) is employed when updating the memory cell [15, 13], i.e., for the LSTM c̃t = tanh(Wcz

′
t +

bc). If ot = 1 for all time t (no output gating network), and if c̃t = Wcxt (no dependence on h′t−1
for update of the memory cell), this model reduces to the recurrent additive network (RAN) [20].

While separate gates ηt and ft were constituted in (10) and (11) to operate on the new and prior
composition of the memory cell, one may also also consider a simpler model with memory cell
updated ct = (1−ft)� c̃t+ft�ct−1; this was referred to as having a Coupled Input and Forget Gate
(CIFG) in [13]. In such a model, the decisions of what to add to the memory cell and what to forget
are made jointly, obviating the need for a separate input gate ηt. We call this variant RKM-CIFG.

4 Extending the Filter Length
4.1 Generalized form of recurrent model
Consider a generalization of (1):

ht = f(W (x0)xt +W (x−1)xt−1 + · · ·+W (x−n+1)xt−n+1 +W (h)ht−1 + b) (12)

where W (x·) ∈ Rd×m, W (h) ∈ Rd×d, and therefore the update of the hidden state ht3 depends on
data observed n ≥ 1 time steps prior, and also on the previous hidden state ht−1. Analogous to (3),
we may express

ei = f(W (x0)x̃i,0 +W (x−1)x̃i,−1 + · · ·+W (x−n+1)x̃i,−n+1 +W (h)h̃i + b) (13)

The inner product f(W (x0)xt + W (x−1)xt−1 + · · · + W (x−n+1)xt−n+1 + W (h)ht−1 +

b)ᵀf(W (x0)x̃i,0 +W (x−1)x̃i,−1 + · · ·+W (x−n+1)x̃i,−n+1 +W (h)h̃i + b) is assumed represented
by a Mercer kernel, and h′i,t = eᵀi ht.

Let Xt = (xt, xt−1, . . . , xt−n+1) ∈ Rm×n be an n-gram input with zero padding if t < (n − 1),
and X̃ = (X̃0, X̃−1, . . . , X̃−n+1) be n sets of filters, with the i-th rows of X̃0, X̃−1, . . . , X̃−n+1

collectively represent the i-th n-gram filter, with i ∈ {1, . . . , j}. Extending Section 2, the kernel is
defined

h′t = qθ(ct) , ct = c̃t + qθ(ct−1) , c̃t = X̃ ·Xt (14)
where X̃ · Xt ≡ X̃0xt + X̃−1xt−1 + · · · + X̃−n+1xt−n+1 ∈ Rj . Note that X̃ · Xt corresponds
to the t-th component output from the n-gram convolution of the filters X̃ and the input sequence;
therefore, similar to Section 2, we represent h′t = qθ(ct) as h′t = kθ(X̃ ∗ x≤t), emphasizing that
the kernel evaluation is a function of outputs of the convolution X̃ ∗ x≤t, here with n-gram filters.
Like in the CNN [18, 37, 17], different filter lengths (and kernels) may be considered to constitute
different components of the memory cell.

4.2 Linear kernel, CNN and Gated CNN
For the linear kernel discussed in connection to (9), equation (14) becomes

h′t = ct = σ2
i (X̃ ·Xt) + σ2

fh
′
t−1 (15)

3Note that while the same symbol is used as in (12), ht clearly takes on a different meaning when n > 1.

5



For the special case of σ2
f = 0 and σ2

i equal to a constant (e.g., σ2
i = 1), (15) reduces to a

convolutional neural network (CNN), with a nonlinear operation typically applied subsequently to h′t.

Rather than setting σ2
i to a constant, one may impose dynamic gating, yielding the model (with

σ2
f = 0)

h′t = ηt � (X̃ ·Xt) , ηt = σ(X̃η ·Xt + bη) (16)

where X̃η are distinct convolutional filters for calculating ηt, and bη is a vector of biases. The form
of the model in (16) corresponds to the Gated CNN [10], which we see as a a special case of the
recurrent model with linear kernel, and dynamic kernel weights (and without feedback, i.e., σ2

f = 0).
Note that in (16) a nonlinear function is not imposed on the output of the convolution X̃ ·Xt, there
is only dynamic gating via multiplication with ηt; the advantages of which are discussed in [10].
Further, the n-gram input considered in (12) need not be consecutive. If spacings between inputs of
more than 1 are considered, then the dilated convolution (e.g., as used in [31]) is recovered.

4.3 Feedback and the generalized LSTM
Now introducing feedback into the memory cell, the model in (8) is extended to

h′t = qθ(ct) , ct = c̃t + qθ(ct−1) , c̃t = X̃ ·Xt + H̃h′t−1 (17)

Again motivated by the linear kernel, generalization of (17) to include gating networks is

h′t = ot � ct , ct = ηt � c̃t + ft � ct−1 , c̃t = X̃ ·Xt + H̃h′t−1 (18)

ot = σ(X̃o ·Xt+W̃oh
′
t−1+bo), ηt = σ(X̃η ·Xt+W̃ηh

′
t−1+bη), ft = σ(X̃f ·Xt+W̃fh

′
t−1+bf )

(19)
where yt = Ah′t and X̃o, X̃η, and X̃f are separate sets of n-gram convolutional filters akin to X̃ .
As an n-gram generalization of (10)-(11), we refer to (18)-(19) as an n-gram RKM-LSTM.

The model in (18) and (19) is similar to the LSTM, with important differences: (i) there is not a
nonlinearity imposed on the update to the memory cell, c̃t, and therefore there are also no biases
imposed on this cell update; (ii) there is no nonlinearity on the output; and (iii) via the convolutions
with X̃ , X̃o, X̃η, and X̃f , the memory cell can take into account n-grams, and the length of such
sequences ni may vary as a function of the element of the memory cell.

5 Related Work
In our development of the kernel perspective of the RNN, we have emphasized that the form of the
kernel kθ(z̃i, zt) = qθ(z̃

ᵀ
i zt) yields a recursive means of kernel evaluation that is only a function of

the elements at the output of the convolutions X̃ ∗ x≤t or X̃ ∗ x≤t, for 1-gram and (n > 1)-gram
filters, respectively. This underscores that at the heart of such models, one performs convolutions
between the sequence of data (. . . , xt+1, xt, xt−1, . . . ) and filters X̃ or X̃ . Consideration of filters
of length greater than one (in time) yields a generalization of the traditional LSTM. The dependence
of such models entirely on convolutions of the data sequence and filters is evocative of CNN and
Gated CNN models for text [18, 37, 17, 10], with this made explicit in Section 4.2 as a special case.

The Gated CNN in (16) and the generalized LSTM in (18)-(19) both employ dynamic gating.
However, the generalized LSTM explicitly employs a memory cell (and feedback), and hence offers
the potential to leverage long-term memory. While memory affords advantages, a noted limitation
of the LSTM is that computation of h′t is sequential, undermining parallel computation, particularly
while training [10, 33]. In the Gated CNN, h′t comes directly from the output of the gated convolution,
allowing parallel fitting of the model to time-dependent data. While the Gated CNN does not employ
recurrence, the filters of length n > 1 do leverage extended temporal dependence. Further, via deep
Gated CNNs [10], the effective support of the filters at deeper layers can be expansive.

Recurrent kernels of the form kθ(z̃, zt) = qθ(z̃
ᵀzt) were also developed in [14], but with the goal of

extending recurrent kernel machines to sequential inputs, rather than making connections with RNNs.
The formulation in Section 2 has two important differences with that prior work. First, we employ
the same vector x̃i for all shift positions t of the inner product x̃ᵀi xt. By contrast, in [14] effectively
infinite-dimensional filters are used, because the filter x̃t,i changes with t. This makes implementation
computationally impractical, necessitating truncation of the long temporal filter. Additionally, the
feedback of h′t in (8) was not considered, and as discussed in Section 3.2, our proposed setup yields
natural connections to long short-term memory (LSTM) [15, 13].

6



Model Parameters Input Cell Output

LSTM [15] (nm+ d)(4d) z′t = [xt, h
′
t−1] ct = ηt � tanh(c̃t) + ft � ct−1 h′t = ot � tanh(ct)

RKM-LSTM (nm+ d)(4d) z′t = [xt, h
′
t−1] ct = ηt � c̃t + ft � ct−1 h′t = ot � ct

RKM-CIFG (nm+ d)(3d) z′t = [xt, h
′
t−1] ct = (1− ft)� c̃t + ft � ct−1 h′t = ot � ct

Linear Kernel w/ ot (nm+ d)(2d) z′t = [xt, h
′
t−1] ct = σ2

i c̃t + σ2
fct−1 h′t = ot � ct

Linear Kernel (nm+ d)(d) z′t = [xt, h
′
t−1] ct = σ2

i c̃t + σ2
fct−1 h′t = tanh(ct)

Gated CNN [10] (nm)(2d) z′t = xt ct = σ2
i c̃t h′t = ot � ct

CNN [18] (nm)(d) z′t = xt ct = σ2
i c̃t h′t = tanh(ct)

Table 1: Model variants under consideration, assuming 1-gram inputs. Concatenating additional
inputs xt−1, . . . , xt−n+1 to z′t in the Input column yields the corresponding n-gram model. Number
of model parameters are shown for input xt ∈ Rm and output h′t ∈ Rd.

Prior work analyzing neural networks from an RKHS perspective has largely been based on the
feature mapping ϕθ(x) and the weight ω [1, 5, 23, 36]. For the recurrent model of interest here,
function ht = f(W (x)xt + W (h)ht−1 + b) plays a role like ϕθ(x) as a mapping of an input xt to
what may be viewed as a feature vector ht. However, because of the recurrence, ht is a function of
(xt, xt−1, . . . ) for an arbitrarily long time period prior to time t:

ht(xt, xt−1, . . . ) = f(W (x)xt+ b+W (h)f(W (x)xt−1 + b+W (h)f(W (x)xt−2 + b+ . . . ))) (20)

However, rather than explicitly working with ht(xt, xt−1, . . . ), we focus on the kernel kθ(z̃i, zt) =
qθ(z̃

ᵀ
i zt) = kθ(x̃i ∗ x≤t).

The authors of [21] derive recurrent neural networks from a string kernel by replacing the exact
matching function with an inner product and assume the decay factor to be a nonlinear function.
Convolutional neural networks are recovered by replacing a pointwise multiplication with addition.
However, the formulation cannot recover the standard LSTM formulation, nor is there a consistent
formulation for all the gates. The authors of [28] introduce a kernel-based update rule to approximate
backpropagation through time (BPTT) for RNN training, but still follow the standard RNN structure.

Previous works have considered recurrent models with n-gram inputs as in (12). For example,
strongly-typed RNNs [3] consider bigram inputs, but the previous input xt−1 is used as a replacement
for ht−1 rather than in conjunction, as in our formulation. Quasi-RNNs [6] are similar to [3], but
generalize them with a convolutional filter for the input and use different nonlinearities. Inputs
corresponding to n-grams have also been implicitly considered by models that use convolutional
layers to extract features from n-grams that are then fed into a recurrent network (e.g., [8, 35, 38]).
Relative to (18), these models contain an extra nonlinearity f(·) from the convolution and projection
matrix W (x) from the recurrent cell, and no longer recover the CNN [18, 37, 17] or Gated CNN [10]
as special cases.

6 Experiments
In the following experiments, we consider several model variants, with nomenclature as follows.
The n-gram LSTM developed in Sec. 4.3 is a generalization of the standard LSTM [15] (for which
n = 1). We denote RKM-LSTM (recurrent kernel machine LSTM) as corresponding to (10)-(11),
which resembles the n-gram LSTM, but without a tanh nonlinearity on the cell update c̃t or emission
ct. We term RKM-CIFG as a RKM-LSTM with ηt = 1− ft, as discussed in Section 3.2. Linear
Kernel w/ ot corresponds to (10)-(11) with ηt = σ2

i and ft = σ2
f , with σ2

i and σ2
f time-invariant

constants; this corresponds to a linear kernel for the update of the memory cell, and dynamic gating
on the output, via ot. We also consider the same model without dynamic gating on the output, i.e.,
ot = 1 for all t (with a tanh nonlinearity on the output), which we call Linear Kernel. The Gated
CNN corresponds to the model in [10], which is the same as Linear Kernel w/ ot, but with σ2

f = 0
(i.e., no memory). Finally, we consider a CNN model [18], that is the same as the Linear Kernel
model, but without feedback or memory, i.e., z′t = xt and σ2

f = 0. For all of these, we may also
consider an n-gram generalization as introduced in Section 4. For example, a 3-gram RKM-LSTM
corresponds to (18)-(19), with length-3 convolutional filters in the time dimension. The models are
summarized in Table 1. All experiments are run on a single NVIDIA Titan X GPU.

Document Classification We show results for several popular document classification datasets
[37] in Table 2. The AGNews and Yahoo! datasets are topic classification tasks, while Yelp Full
is sentiment analysis and DBpedia is ontology classification. The same basic network architecture

7



Parameters AGNews DBpedia Yahoo! Yelp Full
Model 1-gram 3-gram 1-gram 3-gram 1-gram 3-gram 1-gram 3-gram 1-gram 3-gram

LSTM 720K 1.44M 91.82 92.46 98.98 98.97 77.74 77.72 66.27 66.37
RKM-LSTM 720K 1.44M 91.76 92.28 98.97 99.00 77.70 77.72 65.92 66.43
RKM-CIFG 540K 1.08M 92.29 92.39 98.99 99.05 77.71 77.91 65.93 65.92
Linear Kernel w/ ot 360K 720K 92.07 91.49 98.96 98.94 77.41 77.53 65.35 65.94
Linear Kernel 180K 360K 91.62 91.50 98.65 98.77 76.93 76.53 61.18 62.11
Gated CNN [10] 180K 540K 91.54 91.78 98.37 98.77 72.92 76.66 60.25 64.30
CNN [18] 90K 270K 91.20 91.53 98.17 98.52 72.51 75.97 59.77 62.08

Table 2: Document classification accuracy for 1-gram and 3-gram versions of various models. Total
parameters of each model are shown, excluding word embeddings and the classifier.

PTB Wikitext-2
Model PPL valid PPL test PPL valid PPL test

LSTM [15, 25] 61.2 58.9 68.74 65.68
RKM-LSTM 60.3 58.2 67.85 65.22
RKM-CIFG 61.9 59.5 69.12 66.03
Linear Kernel w/ ot 72.3 69.7 84.23 80.21

Table 3: Language model perplexity (PPL) on validation and test sets of the Penn Treebank and
Wikitext-2 language modeling tasks.

is used for all models, with the only difference being the choice of recurrent cell, which we make
single-layer and unidirectional. Hidden representations h′t are aggregated with mean pooling across
time, followed by two fully connected layers, with the second having output size corresponding to
the number of classes of the dataset. We use 300-dimensional GloVe [27] as our word embedding
initialization and set the dimensions of all hidden units to 300. We follow the same preprocessing
procedure as in [34]. Layer normalization [2] is performed after the computation of the cell state ct.
For the Linear Kernel w/ ot and the Linear Kernel, we set4 σ2

i = σ2
f = 0.5.

Notably, the derived RKM-LSTM model performs comparably to the standard LSTM model across
all considered datasets. We also find the CIFG version of the RKM-LSTM model to have similar
accuracy. As the recurrent model becomes less sophisticated with regard to gating and memory,
we see a corresponding decrease in classification accuracy. This decrease is especially significant
for Yelp Full, which requires a more intricate comprehension of the entire text to make a correct
prediction. This is in contrast to AGNews and DBpedia, where the success of the 1-gram CNN
indicates that simple keyword matching is sufficient to do well. We also observe that generalizing the
model to consider n-gram inputs typically improves performance; the highest accuracies for each
dataset were achieved by an n-gram model.

Language Modeling We also perform experiments on popular word-level language generation
datasets Penn Tree Bank (PTB) [24] and Wikitext-2 [26], reporting validation and test perplexities
(PPL) in Table 3. We adopt AWD-LSTM [25] as our base model5, replacing the standard LSTM
with RKM-LSTM, RKM-CIFG, and Linear Kernel w/ ot to do our comparison. We keep all other
hyperparameters the same as the default. Here we consider 1-gram filters, as they performed best
for this task; given that the datasets considered here are smaller than those for the classification
experiments, 1-grams are less likely to overfit. Note that the static gating on the update of the memory
cell (Linear Kernel w/ ot) does considerably worse than the models with dynamic input and forget
gates on the memory cell. The RKM-LSTM model consistently outperforms the traditional LSTM,
again showing that the models derived from recurrent kernel machines work well in practice for the
data considered.

LFP Classification We perform experiments on a Local Field Potential (LFP) dataset. The LFP
signal is multi-channel time series recorded inside the brain to measure neural activity. The LFP
dataset used in this work contains recordings from 29 mice (wild-type or CLOCK∆19 [32]), while
the mice were (i) in their home cages, (ii) in an open field, and (iii) suspended by their tails. There
are a total of m = 11 channels and the sampling rate is 1000Hz. The goal of this task is to predict

4σ2
i and σ2

f can also be learned, but we found this not to have much effect on the final performance.
5We use the official codebase https://github.com/salesforce/awd-lstm-lm and report ex-

periment results before two-step fine-tuning.

8

https://github.com/salesforce/awd-lstm-lm


Model n-gram
LSTM

RKM-
LSTM

RKM-
CIFG

Linear
Kernel w/ ot

Linear
Kernel

Gated
CNN [10] CNN [22]

Accuracy 80.24 79.02 77.58 76.11 73.13 76.02 73.40
Table 4: Mean leave-one-out classification accuracies for mouse LFP data. For each model, (n = 40)-
gram filters are considered, and the number of filters in each model is 30.

the state of a mouse from a 1 second segment of its LFP recording as a 3-way classification problem.
In order to test the model generalizability, we perform leave-one-out cross-validation testing: data
from each mouse is left out as testing iteratively while the remaining mice are used as training.

SyncNet [22] is a CNN model with specifically designed wavelet filters for neural data. We incorporate
the SyncNet form of n-gram convolutional filters into our recurrent framework (we have parameteric
n-gram convolutional filters, with parameters learned). As was demonstrated in Section 4.2, the
CNN is a memory-less special case of our derived generalized LSTM. An illustration of the modified
model (Figure 3) can be found in Appendix A, along with other further details on SyncNet.

While the filters of SyncNet are interpretable and can prevent overfitting (because they have a small
number of parameters), the same kind of generalization to an n-gram LSTM can be made without
increasing the number of learned parameters. We do so for all of the recurrent cell types in Table
1, with the CNN corresponding to the original SyncNet model. Compared to the original SyncNet
model, our newly proposed models can jointly consider the time dependency within the whole signal.
The mean classification accuracies across all mice are compared in Table 4, where we observe
substantial improvements in prediction accuracy through the addition of memory cells to the model.
Thus, considering the time dependency in the neural signal appears to be beneficial for identifying
hidden patterns. Classification performances per subject (Figure 4) can be found in Appendix A.

7 Conclusions
The principal contribution of this paper is a new perspective on gated RNNs, leveraging concepts
from recurrent kernel machines. From that standpoint, we have derived a model closely connected
to the LSTM [15, 13] (for convolutional filters of length one), and have extended such models to
convolutional filters of length greater than one, yielding a generalization of the LSTM. The CNN
[18, 37, 17], Gated CNN [10] and RAN [20] models are recovered as special cases of the developed
framework. We have demonstrated the efficacy of the derived models on NLP and neuroscience tasks,
for which our RKM variants show comparable or better performance than the LSTM. In particular,
we observe that extending LSTM variants with convolutional filters of length greater than one can
significantly improve the performance in LFP classification relative to recent prior work.

Acknowledgments
The research reported here was supported in part by DARPA, DOE, NIH, NSF and ONR.

References
[1] Fabio Anselmi, Lorenzo Rosasco, Cheston Tan, and Tomaso Poggio. Deep Convolutional

Networks are Hierarchical Kernel Machines. arXiv:1508.01084, 2015.

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer Normalization.
arXiv:1607.06450, 2016.

[3] David Balduzzi and Muhammad Ghifary. Strongly-Typed Recurrent Neural Networks. Interna-
tional Conference on Machine Learning, 2016.

[4] Alain Berlinet and Christine Thomas-Agnan. Reproducing Kernel Hilbert spaces in Probability
and Statistics. Kluwer Publishers, 2004.

[5] Alberto Bietti and Julien Mairal. Invariance and Stability of Deep Convolutional Representations.
Neural Information Processing Systems, 2017.

[6] James Bradbury, Stephen Merity, Caiming Xiong, and Richard Socher. Quasi-recurrent neural
networks. International Conference of Learning Representations, 2017.

9



[7] Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin Johnson, Wolfgang Macherey, George
Foster, Llion Jones, Niki Parmar, Mike Schuster, Zhifeng Chen, Yonghui Wu, and Macduff
Hughes. The Best of Both Worlds: Combining Recent Advances in Neural Machine Translation.
arXiv:1804.09849v2, 2018.

[8] Jianpeng Cheng and Mirella Lapata. Neural Summarization by Extracting Sentences and Words.
Association for Computational Linguistics, 2016.

[9] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation. Empirical Methods in Natural Language Process-
ing, 2014.

[10] Yann N. Dauphin, Angela Fan, Michael Auli, and David Grangier. Language Modeling with
Gated Convolutional Networks. International Conference on Machine Learning, 2017.

[11] Marc G. Genton. Classes of Kernels for Machine Learning: A Statistics Perspective. Journal of
Machine Learning Research, 2001.

[12] David Golub and Xiaodong He. Character-Level Question Answering with Attention. Empirical
Methods in Natural Language Processing, 2016.

[13] Klaus Greff, Rupesh Kumar Srivastava, Jan Koutník, Bas R. Steunebrink, and Jürgen Schmidhu-
ber. LSTM: A Search Space Odyssey. Transactions on Neural Networks and Learning Systems,
2017.

[14] Michiel Hermans and Benjamin Schrauwen. Recurrent Kernel Machines: Computing with
Infinite Echo State Networks. Neural Computation, 2012.

[15] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural Computation,
1997.

[16] Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. An Empirical Exploration of Recur-
rent Network Architectures. International Conference on Machine Learning, 2015.

[17] Yoon Kim. Convolutional Neural Networks for Sentence Classification. Empirical Methods in
Natural Language Processing, 2014.

[18] Yann LeCun and Yoshua Bengio. Convolutional Networks for Images, Speech, and Time Series.
The Handbook of Brain Theory and Neural Networks, 1995.

[19] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based Learning
Applied to Document Recognition. Proceedings of IEEE, 1998.

[20] Kenton Lee, Omer Levy, and Luke Zettlemoyer. Recurrent Additive Networks.
arXiv:1705.07393v2, 2017.

[21] Tao Lei, Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Deriving Neural Architectures
from Sequence and Graph Kernels. International Conference on Machine Learning, 2017.

[22] Yitong Li, Michael Murias, Samantha Major, Geraldine Dawson, Kafui Dzirasa, Lawrence
Carin, and David E. Carlson. Targeting EEG/LFP Synchrony with Neural Nets. Neural
Information Processing Systems, 2017.

[23] Julien Mairal. End-to-End Kernel Learning with Supervised Convolutional Kernel Networks.
Neural Information Processing Systems, 2016.

[24] Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a Large
Annotated Corpus of English: The Penn Treebank. Association for Computational Linguistics,
1993.

[25] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and Optimizing LSTM
Language Models. International Conference on Learning Representations, 2018.

10



[26] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer Sentinel Mixture
Models. International Conference of Learning Representations, 2017.

[27] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. GloVe: Global Vectors for
Word Representation. Empirical Methods in Natural Language Processing, 2014.

[28] Christopher Roth, Ingmar Kanitscheider, and Ila Fiete. Kernel rnn learning (kernl). International
Conference Learning Representation, 2019.

[29] Bernhard Scholkopf and Alexander J. Smola. Learning with kernels. MIT Press, 2002.

[30] Corentin Tallec and Yann Ollivier. Can Recurrent Neural Networks Warp Time? International
Conference of Learning Representations, 2018.

[31] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex
Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. WaveNet: A Generative
Model for Raw Audio. arXiv:1609.03499, 2016.

[32] Jordy van Enkhuizen, Arpi Minassian, and Jared W Young. Further evidence for Clock∆19 mice
as a model for bipolar disorder mania using cross-species tests of exploration and sensorimotor
gating. Behavioural Brain Research, 249:44–54, 2013.

[33] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need. Neural Information Processing
Systems, 2017.

[34] Guoyin Wang, Chunyuan Li, Wenlin Wang, Yizhe Zhang, Dinghan Shen, Xinyuan Zhang, Ri-
cardo Henao, and Lawrence Carin. Joint Embedding of Words and Labels for Text Classification.
Association for Computational Linguistics, 2018.

[35] Jin Wang, Liang-Chih Yu, K. Robert Lai, and Xuejie Zhang. Dimensional Sentiment Analysis
Using a Regional CNN-LSTM Model. Association for Computational Linguistics, 2016.

[36] Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P. Xing. Deep Kernel
Learning. International Conference on Artificial Intelligence and Statistics, 2016.

[37] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level Convolutional Networks for Text
Classification. Neural Information Processing Systems, 2015.

[38] Chunting Zhou, Chonglin Sun, Zhiyuan Liu, and Francis C.M. Lau. A C-LSTM Neural Network
for Text Classification. arXiv:1511.08630, 2015.

11



A More Details of the LFP Experiment

In this section, we provide more details on the Sync-RKM model. In order to incorporate the SyncNet
model [22] into our framework, the weight W (x) =

[
W (x0),W (x−1), · · · ,W (x−n+1)

]
defined in

Eq. (12) is parameterized as wavelet filters. If there is a total of K filters, then W (x) is of size
K × C × n.

Specifically, suppose the n-gram input data at time t is given as Xt = [xt−n+1, · · · ,xt] ∈ RC×n
with channel number C and window size n. The k-th filter for channel c can be written as

W
(x)
kc = αkc cos (ωkt + φkc) exp(−βkt2) (21)

W
(x)
kc has the form of the Morlet wavelet base function. Parameters to be learned are αkc, ωk, φkc

and βk for c = 1, · · ·C and k = 1, · · · ,K. t is a time grid of length n, which is a constant vector.
In the recurrent cell, each W

(x)
kc is convolved with the c-th channel of Xt using 1-d convolution.

Figure 3 gives the framework of this Sync-RKM model. For more details of how the filter works,
please refer to the original work [22].

𝑪

𝑻
1 𝑡 𝑇

Sync-
RKM

Sync-
RKM

Sync-
RKM … Sync-

RKM
Sync-
RKM

…

2 3

𝒉𝒕 = 𝒇 𝑿𝒕 +𝑾(𝒉)𝒉𝒕−𝟏 + 𝒃

𝑾(𝒙)

Figure 3: Illustration of the proposed model with SyncNet filters. The input LFP signal is given by
the C × T matrix. The SyncNet filters (right) are applied on signal chunks at each time step.

When applying the Sync-RKM model on LFP data, we choose the window size as n = 40 to consider
the time dependencies in the signal. Since the experiment is performed by treating each mouse as test
iteratively, we show the subject-wise classification accuracy in Figure 4. The proposed model does
consistently better across nearly all subjects.

Figure 4: Subject-wise classification accuracy comparison for LFP dataset.

12


	Introduction
	Recurrent Kernel Network
	Choice of Recurrent Kernels & Introduction of Gating Networks
	Fixed kernel parameters & time-invariant memory-cell gating 
	Dynamic gating networks & LSTM-like model

	Extending the Filter Length
	Generalized form of recurrent model
	Linear kernel, CNN and Gated CNN
	Feedback and the generalized LSTM

	Related Work
	Experiments
	Conclusions
	More Details of the LFP Experiment

