
Deep Automatic Threat Recognition:

Considerations for Airport X-Ray Baggage Screening

by

Kevin J Liang

Department of Electrical and Computer Engineering
Duke University

Date:
Approved:

Lawrence Carin, Advisor

Arthur Robert Calderbank

Guillermo Sapiro

Henry Pfister

Hai Li

Dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy

in the Department of Electrical and Computer Engineering
in the Graduate School of

Duke University

2020

ABSTRACT

Deep Automatic Threat Recognition:

Considerations for Airport X-Ray Baggage Screening

by

Kevin J Liang

Department of Electrical and Computer Engineering
Duke University

Date:
Approved:

Lawrence Carin, Advisor

Arthur Robert Calderbank

Guillermo Sapiro

Henry Pfister

Hai Li

An abstract of a dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy

in the Department of Electrical and Computer Engineering
in the Graduate School of

Duke University

2020

Copyright c© 2020 by Kevin J Liang

All rights reserved

Abstract

Deep learning has made significant progress in recent years, contributing to major

advancements in many fields. One such field is automatic threat recognition, where

methods based on neural networks have surpassed more traditional machine learning

methods. In particular, we evaluate the performance of convolutional object detection

models within the context of X-ray baggage screening at airport checkpoints. To

do so, we collected a large dataset of scans containing threats from a diverse set

of classes, and then trained and compared a number of models. Many currently

deployed X-ray scanners contain multiple X-ray emitter-detector pairs arranged to

give multiple views of the scanned object, and we find that combining predictions from

these improves overall performance. We select the best-performing models fitting

our design criteria and integrate them into the X-ray scanning machines, resulting in

functional prototypes capable of simulating live screening deployment.

We also explore a number of subfields of deep learning with potential to improve

these deep automatic threat recognition algorithms. For example, as data collection

efforts are scaled up and the number threat categories are expanded, the likelihood of

missing annotations will also increase, especially if this new data is collected from real

airport traffic. Such a setting is actually common in object detection datasets, and

we show that a positive-unlabeled learning assumption better fits the characteristics

of the data. Additionally, real-world data distributions tend to drift over time or

evolve cyclically with the seasons. Baggage scan images also tend to be sensitive,

meaning storing data may represent a security or privacy risk. As a result, a continual

learning setting may be more appropriate for these kinds of data, which we examine

in the context of generative adversarial networks. Finally, the sensitivity of security

applications makes understanding models especially important. We thus spend some

iv

time examining how certain popular neural networks emerge from assumptions made

starting from kernel methods. Through these works, we find that deep learning

methods show considerable promise to improve existing automatic threat recognition

systems.

v

Acknowledgements

To start, I would like to express deep thanks to my Ph.D. adviser, Lawrence Carin. I

first came to him as a complete stranger, an undergraduate student unsure if I wanted

to pursue graduate research. He saw potential, took the chance, and offered me a

position in his group, an opportunity whose value I didn’t fully comprehend at first

but have become more appreciative of with each passing year. His encouragement

and belief in my abilities played a key role in me becoming the person I am today. I

especially appreciate his willingness to let a junior, untested graduate student give a

software tutorial to over 150 students at the fledging Duke Machine Learning School

program. I had no idea I would eventually play the role I have had in shaping

the Duke Machine Learning Schools, +DataScience, and the Duke Introduction to

Machine Learning Coursera over the past 4 years, and I thank Larry for helping me

discover teaching as a passion.

In addition to my adviser, I am appreciative of my dissertation committee: Robert

Calderbank, Guillermo Sapiro, Henry Pfister, and Hai Li. It is an honor to have such

a distinguished group providing feedback and encouragement during my graduate

studies. Special thanks to Guillermo for being the first to introduce me to research,

so many years ago.

I am also grateful for my many collaborators and mentors over the years: David

Carlson, John Sigman, Greg Spell, Dan Salo, Xuejun Liao, Chunyuan Li, Guoyin

Wang, Nikhil Mehta, Nathan Inkawhich, Yuewei Yang, Liqun Chen, Yitong Li, Ri-

cardo Henao, Yunchen Pu, Chenyang Tao, Kyle Ulrich, and the many others from

the Carin group. Also, thanks to Boyla Mainsah, Sandy Throckmorton, and Leslie

Collins for being research mentors during my undergraduate career, Katherine Heller

for providing guidance during the first year of my Ph.D. career, and Lisa Huettel for

vi

shaping much of my undergraduate career with her indispensable advising. Outside

of Duke University, I have also been fortunate to work with Chris Gregory, Geert Heil-

mann, and Souleymane Diallo from Smiths Detection; Dan Strellis, William Chang,

Felix Liu, and Tejas Mehta from Rapiscan Systems; and Armita Soroosh and Suriyun

Whitehead from the Transportation Security Administration. None of my research

would have been possible without all of your outstanding efforts, stimulating conver-

sations, friendly encouragement, and enlightening mentorship.

The internships I have had over the years have also been instrumental in my

development. It has been a privilege to work with so many talented people. Thank

you Roy Williams from Microsoft; Wei Hua, Mona Mahmoudi, and Ting Yu from

Google; Robbie Allen, Ya Xue, and Ikenna Odinaka from Infinia ML; and Yunchen

Pu (again) and Wenlin Chen from Facebook. After each of these positive experiences,

I always returned to Duke with fresh perspectives and renewed vigor.

To Duke University, I first stepped on your beautiful campus almost 9 years ago,

with no idea of the journey I had ahead of me. Thank you for taking me in and being

a welcoming home for all these years. I have met so many amazing people here, many

of them lifelong friends and continuing sources of inspiration, and I have been given

opportunities I would have never had anywhere else.

And finally, to my family: my parents and my sister, Sarah. Thank you for your

love and unending support. Wouldn’t have been able to do it without you.

vii

Contents

Abstract iv

Acknowledgements vi

List of Figures xii

List of Tables xiv

1 Introduction 1

2 Automatic Threat Recognition of Prohibited Items at Aviation
Checkpoints with X-ray Imaging: A Deep Learning Approach 6

2.1 Introduction . 6

2.2 Data Collection . 9

2.2.1 Smiths Detection X-ray System 9

2.2.2 Images and Labeling . 10

2.3 Methods . 12

2.3.1 Models . 12

2.3.2 Evaluation Metrics . 14

2.3.3 Multi-View Evaluation . 16

2.3.4 Hardware Implementation . 17

2.4 Results . 18

2.4.1 Object Detection Evaluation: Single View 18

2.4.2 Object Detection Evaluation: Multi-View 20

2.4.3 Detection vs False Alarm Evaluation 21

2.5 Conclusions . 22

viii

3 Toward Automatic Threat Recognition for Airport X-ray Bag-
gage Screening with Deep Convolutional Object Detection 23

3.1 Introduction . 23

3.2 Data Collection . 25

3.2.1 Rapiscan 620DV X-Ray Scanning System 25

3.2.2 Scan Collection and Annotation 26

3.3 Methods . 28

3.3.1 Convolutional Neural Networks 28

3.3.2 Object Detection . 29

3.3.3 Evaluation . 31

3.3.4 Rapiscan 620DV Integration 32

3.4 Related Work . 32

3.5 Experiments . 34

3.5.1 Feature Extractor and Meta-architecture 36

3.5.2 Anchor Boxes . 37

3.6 Discussion . 38

3.6.1 Multiple View Redundancy 38

3.6.2 Sample Detections . 40

3.7 Conclusions . 41

4 Object Detection as a Positive-Unlabeled Problem 42

4.1 Introduction . 42

4.2 Example Forgetting in Object Detection 45

4.3 Methods . 48

4.3.1 Faster R-CNN . 48

ix

4.3.2 PU Learning . 49

4.3.3 PU Learning for Object Detection 51

4.4 Related work . 53

4.5 Experiments . 55

4.5.1 Hand-tuning Versus Estimation of πp 55

4.5.2 PU Versus PN on PASCAL VOC and MS COCO 56

4.5.3 Visual Genome . 57

4.5.4 DeepLesion . 59

4.6 Conclusions and Future Work . 60

5 Generative Adversarial Network Training is a Continual Learning
Problem 61

5.1 Introduction . 61

5.2 Catastrophic Forgetting in GANs . 64

5.3 Method . 65

5.3.1 Classic Continual Learning . 65

5.3.2 GAN Continual Learning . 67

5.4 Related Work . 70

5.5 Experiments . 71

5.5.1 Discriminator Catastrophic Forgetting 71

5.5.2 Mixture of Eight Gaussians 73

5.5.3 Image Generation of CelebA and CIFAR-10 75

5.5.4 Text Generation of COCO Captions 76

5.6 Conclusions . 77

6 Kernel-Based Approaches for Sequence Modeling: Connections
to Neural Methods 86

x

6.1 Introduction . 86

6.2 Recurrent Kernel Network . 88

6.3 Choice of Recurrent Kernels & Introduction of Gating Networks . . . 92

6.3.1 Fixed Kernel Parameters & Time-invariant Memory-cell Gat-
ing . 92

6.3.2 Dynamic Gating Networks & LSTM-like Model 93

6.4 Extending the Filter Length . 95

6.4.1 Generalized Form of Recurrent Model 95

6.4.2 Linear Kernel, CNN and Gated CNN 96

6.4.3 Feedback and the Generalized LSTM 96

6.5 Related Work . 97

6.6 Experiments . 100

6.7 Conclusions . 104

7 Conclusions 107

Bibliography 110

Biography 128

xi

List of Figures

2.1 Sample image scans with Smiths Detection host X-ray system 10

2.2 Example bounding boxes of firearms 12

2.3 Example bounding boxes of sharps 13

2.4 Generated detection boxes superimposed on scans, at various IoUs . . 16

2.5 Four views generated during a scan 16

2.6 Precision-recall curve of each objection model on firearms and sharps
data . 18

2.7 Performance gains of the precision-recall curves by incorporating mul-
tiple views for sharps detection . 21

3.1 Example scans of bags in false color containing various threats 25

3.2 Diagram of the prototype Rapiscan 620DV X-ray screening system
with threat recognition capability . 29

3.3 PR curves for four meta-architecture/feature extractor combinations . 33

3.4 Bounding box heatmap and anchor box precision-recall comparison . 35

3.5 PR comparison of single view versus multi-view detection for sharps,
blunts, firearms, and LAGs . 36

3.6 Sample detections from the Faster R-CNN model with ResNet152 as
the feature extractor . 39

4.1 Missing object annotations in several popular object detection datasets 43

4.2 Detections on a PASCAL VOC train set image missing annotations
throughout training . 44

4.3 Detection rates of objects before and after training 46

xii

4.4 Positive-Negative (PN) versus Positive-Unlabeled (PU) classification . 48

4.5 Faster R-CNN Region Proposal Network (RPN) with the proposed
positive-unlabeled cross-entropy loss 52

4.6 Positive class prior π̂p estimation . 52

4.7 mAP at IoU 0.5 (AP50) on PASCAL VOC and MS COCO, for a range
of label missingness ρ. 55

4.8 Lesion sensitivity versus false positive rate and IoU threshold for dif-
ferent false positive allowances per image for PN versus PU learning . 58

5.1 Generator distribution oscillations on mixture of eight Gaussians . . . 62

5.2 Discriminator test accuracy on fake GAN datasets 72

5.3 Image samples from a few generated “fake MNIST” datasets 82

5.4 Generator samples at 5000 training step intervals for GAN, SN-GAN,
and EWC-GAN . 83

5.5 Generated image samples, drawn randomly from GANs with EWC
regularization. 85

6.1 Recurrent neural network (RNN) versus recurrent kernel machine (RKM)
comparison . 91

6.2 Recurrent Kernel Machine Long Short-Term Memory (RKM-LSTM) . 94

6.3 Illustration of the proposed model with SyncNet filters 106

6.4 Subject-wise classification accuracy comparison for the various models
on the LFP dataset. 106

xiii

List of Tables

2.1 Top-1 accuracy on ImageNet classification and model size for the CNNs
used in experiments . 14

2.2 Single-view performance of each object detection model on firearms
and sharps . 19

2.3 Multi-view performance on knives . 20

3.1 Total number of unique threat items and number of images collected
for each threat. 27

3.2 ImageNet classification accuracy and number of parameters for con-
sidered CNN architectures . 29

3.3 Inference speed and mAP of the considered feature extractor and meta-
architecture combinations . 31

3.4 Single View versus Effective Multiple View Average Precisions (APs). 38

4.1 Detector performance on Visual Genome, with full labels, at various
IoU thresholds. 57

5.1 Iterations per second, inception score, and symmetric KL divergence
comparison on a mixture of eight Gaussians. 74

5.2 Fréchet Inception Distance and Inception Score on CelebA and CIFAR-10 76

5.3 Test BLEU ↑ results on MS COCO 77

5.4 Self BLEU ↓ results on MS COCO 77

5.5 Sample sentence generations from EWC + textGAN 84

6.1 Recurrent model variants summary 101

6.2 Document classification accuracy for 1-gram and 3-gram models . . . 102

6.3 Language model perplexity on the Penn Treebank and Wikitext-2
datasets . 102

xiv

6.4 Mean leave-one-out classification accuracies for mouse LFP data . . . 103

xv

Chapter 1

Introduction

Over the past decade, deep learning [LBH15, GBC16] has revolutionized a number of

fields. Instead of traditional machine learning approaches of utilizing hand-engineered

features, deep learning leverages neural networks to learn hierarchical, abstract repre-

sentations from the data itself. In many settings, these learned representations have

far outperformed human-selected ones, leading to advances in a number of applica-

tions, including computer vision [KSH12, RHGS15, RFB15, ALA+15, PGH+16], nat-

ural language processing [HS97, WSC+16, VSP+17, DCLT19], audio signal process-

ing [FLTZ10, ODZ+16], and reinforcement learning [LHP+15, MKS+15, SHM+16].

While neural networks can be computationally intensive to train and require a large

set of data samples [SSSG17], Moore’s Law and the adaptation of graphical pro-

cessing units (GPUs) for scientific computing [KW05, KSH12] coupled with the rise

of big data have reduced these barriers, making deep learning increasingly feasible.

No longer just an academic curiosity, neural networks have shown enough promise on

traditional benchmark datasets that deep methods are being applied to or considered

for an increasingly wide array of real-world applications.

One such application of interest is automatic threat recognition. Deep computer

vision algorithms capable of automatically detecting objects of interest have the po-

tential to greatly improve existing methods across many security applications. In

this dissertation, we begin by focusing on the security application of bag screening.

X-ray scanners are deployed at a variety of security checkpoints around the world,

with the goal of preventing dangerous items from being brought into certain vulner-

able areas. These security checkpoints feature prominently in air travel, aiming to

1

prevent potential bad actors from bringing weapons into airport terminals and, ulti-

mately, onto airplanes. These scanners use X-ray technology to provide an internal

view of carry-on baggage and personal belongings. This allows human operators to

“see” inside items without having to physically open each one, thereby minimizing

intrusiveness and speeding up inspections.

While these machines employ sophisticated technology to construct images of

internal contents, it remains up to human operators to visually locate and identify

any prohibited items should they be present. This can be a challenging task. Because

of the transmission nature of X-ray imaging, scans are the result of a 3-dimensional

volume being collapsed into a 2-dimensional image. While machines often position

multiple X-ray emitter-detector pairs around the scanning tunnel to provide multiple

views, each image can still be quite cluttered, with objects occurring stacked in

varying orientations or positions. Threat items are also rare, diverse, and constantly

evolving; operators must remain vigilant for many classes of items at all times, some

of which they may only see once or look very different the next time it appears. To

maintain throughput, decisions must be made quickly as well, often on the order of

seconds. Finally, the human factor of the decision process means variability between

operators, and fatigue can lead to performance deterioration over time. A computer

algorithm that never tires or bores, standardized across all machines operating in all

airports, and capable of making predictions quickly can provide significant assistance

to human operators at existing checkpoints, perhaps taking the first steps toward

rethinking or automating security checkpoints.

As a result, a number of agencies around the world have turned to computer vision

algorithms using deep learning as a possible approach to automatic threat detection at

airport checkpoints [AB20]. In particular, the United States Transportation Security

Administration (TSA) approached Duke University to explore the potential of such

2

an application. We also partnered with Smiths Detection and Rapiscan Systems,

whose X-ray scanners make up the vast majority of the fleet currently deployed at

American airports. Smiths and Rapiscan provided much of the technical domain

knowledge of airport X-ray security screening and collected much of the data needed

to train our models. Since the goal of the project was to build functional prototypes

to test the feasibility of performing automatic threat recognition live, it was also

necessary to integrate trained model trained models into the machines themselves.

Rapiscan and Smiths provided significant assistance in this regard as well.

We start with standard fully supervised deep learning methods. Specifically,

we investigated the performance of popular convolutional object detection mod-

els [RHGS15, DLHS16, LAE+16] on X-ray baggage scans. Given that this kind

of data is not publicly available, the first step was to collect large datasets of threats

in varied environments with both the Smiths HI-SCAN 6040aTiX (Chapter 2) and

Rapiscan 620DV (Chapter 3) machines [LHG+18, LSS+19]. Each of these data sam-

ples had at least one threat, with the threat identity saved as a classification label and

bounding boxes indicating location drawn by hand. We then trained several models

in a fully supervised manner on these datasets and compared performance across

models on each target class. Given the multiview nature of X-ray baggage scanners,

we explored a number of schemes for combining information from 2 or 4 images of

the same bag from different perspectives, but ultimately found that a simple OR-gate

style decision-making process was sufficiently effective, significantly boosting perfor-

mance over using just a single view or image. Finally, having achieved promising

performance on held out test sets, we then proceeded to integrate trained algorithms

directly into Smiths and Rapiscan machines, projecting our model’s predictions di-

rectly onto the viewing screens a human operator might see at a checkpoint.

While we were able to collect sizable datasets for supervised training, a major

3

weakness with this approach is how expensive data collection is: despite strategies

to accelerate bag assembly and threat annotation, it still took about 400 worker-

hours to collect each dataset. On the other hand, millions of scans are conducted

at US airports everyday. This type of data is commonly referred to as Stream-

of-Commerce (SOC), and our collaboration with the TSA opens up the possibility

of tapping into this near limitless source of data, including threat examples: for

example, the TSA regularly finds thousands of loaded firearms in carry-on baggage

every year [Wag20, TSA20]. Under current operational procedures, this data remains

unlabeled and uncollected. However, given collaboration with the TSA or other

security agencies, it is possible to implement a system where the many items caught at

checkpoints daily are annotated and saved. This would make the SOC data a valuable

data source. Unfortunately, it is highly probable that not every threat in the SOC is

caught, leading to underlabeled data. In Chapter 4, we examine the impacts of such

data during training [YLC20]. Notably, we find that many popular object detection

datasets [EVW+10, LMB+14, YWLS17, KZG+17] are missing annotations for many

object instances, as the complexity of object detection scenes make an exhaustive

labeling difficult. We find that recasting object detection from the implicitly assumed

positive-negative (PN) classification problem to a positive-unlabeled (PU) one can

improve detection performance for many object detection datasets.

Real-world environments tend to change over time, and as a result, data distribu-

tion shift is a natural tendency. On the other hand, many machine learning models

are trained with static datasets that represent a snapshot in time. Over time, a model

trained with such a dataset may become stale and unable to adapt to new kinds of

inputs. This may present a challenge for deployment of automatic threat recognition

systems at airports, as passenger bags, electronics, fashion, and the threats them-

selves are likely to evolve. The changing of the seasons are also likely to inject an

4

annual cyclical nature to the types of items carried. Model’s that are able to learn

in a continual manner are more likely to perform well over time. Given that it is

a common concern for machine learning, continual learning [PKP+19] has garnered

considerable interest in recent years. In Chapter 5, continual learning within the

context of generative adversarial networks [GPAM+14] are explored [LLWC18a]. We

find that the dynamics of the adversarial game played by the generator and discrimi-

nator tend to lead to oscillations due to catastrophic forgetting [MC89, Rat90], which

can be combated with continual learning techniques.

Especially for sensitive applications like security screening, we often care about

model interpretability, so we can identify how models come to the conclusions they

make. On the other hand, neural networks are commonly referred to as “blackbox.”

While this characterization may be a little strong, it is fair to say that how deep

learning methods make decision is less clear than other types of machine learning,

like kernel methods. Being able to understand how neural networks work go a long

way towards building trust in such systems, especially when the consequences of a

wrong answer are dire. In Chapter 6, we explore connections between kernel meth-

ods and sequential neural methods [LWL+19]. In particularly, we see how certain

assumptions can allow one to derive popular sequential neural networks like Long

short-term memory (LSTM) [HS97] and the convolutional neural network [LB95]

emerge naturally from kernel methods.

We conclude in Chapter 7 with a summary of our contributions and point out some

next steps to further improve the model and prepare for full-scale deployment. We

also identify some interesting future research directions relevant to automatic threat

recognition. Through these works, we have demonstrated the potential for deep con-

volutional object detection models within the context automatic threat recognition

at airport checkpoints.

5

Chapter 2

Automatic Threat Recognition of

Prohibited Items at Aviation Checkpoints

with X-ray Imaging: A Deep Learning

Approach

2.1 Introduction

It is the responsibility of the Transportation Security Administration (TSA) to ensure

the safety of the traveling public within the US, including the over 2.5 million passen-

gers passing through American airports each day [Adm19]. As such, before boarding

an airplane, every passenger must pass through a security checkpoint, where the

TSA screens carry-on baggage and personal belongings for dangerous and prohibited

items. To facilitate screening, the TSA employs dual-energy multi-view X-ray scan-

ners produced by Smiths Detection and other vendors that provide a non-intrusive

internal view of bags. These scanners produce images color-coded to show material

properties that are then displayed on screens for human Transportation Security Of-

ficers (TSOs) to examine. Bags or bins containing potential threats are removed for

further inspection.

The current Concept of Operations (CONOPs) requires the TSO to visually in-

spect each image to pick out threats, which can be a challenging task. In this context,

threats refer to items prohibited by the TSA, which can vary widely, including (but

not limited to) firearms, sharps, blunt weapons, precursors, and explosives. Not only

do these items come in many different and evolving forms, they are also often packed

6

in cluttered bag environments, and many can be confused with benign objects of sim-

ilar material properties or shapes. Certain threats are quite rare as well, requiring

TSOs to maintain vigilance over long shifts. Moreover, in order to maintain high

passenger throughput at the checkpoints, TSOs must make their decisions quickly.

While challenging for humans alone, computer algorithms that analyze scans

alongside human operators may boost overall performance. Current scanners already

implement algorithms that calculate material properties from dual-energy multi-view

scans, automatically highlighting objects or regions that might contain explosives or

other prohibited items. It is of TSA interest to extend this automatic detection capa-

bility to support operator detection of other prohibited item classes, such as firearms

or sharps. Such an algorithm must be accurate enough to be trusted, have a low

enough false alarm rate so as to not be a distraction, and be fast enough to not slow

down current operations–we aim for a rough cutoff of about a second per bag.

Within the greater field of computer vision, the task of localizing and classify-

ing objects is a canonically studied problem, commonly termed “object detection.”

In this context, localization refers to determining the location of an object within

an image, often by producing the coordinates of a box that tightly bounds it (a

“bounding box”); classification refers to the selection of one of a pre-determined

number of class labels for each such object. Locating and identifying threat ob-

jects is exactly what TSOs at security checkpoints do every day, so developing the

ability to do so automatically is of value. In recent years, the emergence of deep

learning, a subfield of machine learning, has resulted in an unprecedented leap in

the performance of object detection models. In particular, methods based on convo-

lutional neural networks [LBD+89, KSH12, IS15, HZRS16, SIVA16, HZC+17] have

resulted in algorithms that have proven effective at detecting a wide range of object

classes [GDDM14, Gir15, RHGS15, LAE+16, DLHS16, HRS+17].

7

The bulk of object detection research has focused on datasets of natural im-

ages [EVW+10, LMB+14, RDS+15], but X-ray scans of baggage possess certain

unique aspects. X-ray scans are produced by transmission (photons pass completely

through the target), as opposed to reflections off of surfaces. This means that

individual items can appear superimposed on top of each other, while also ap-

pearing in any orientation. Additionally, multiple X-ray detectors are positioned

within the scanner to provide multiple views of the same object, unlike single-

perspective natural images typically considered in object detection. Nonetheless,

deep learning has already demonstrated some success for X-ray image security screen-

ing [RJMG17, AB17, AKWB18]. The work shown in this paper, however, is part of

the first effort to incorporate deep learning in real-world systems at US airport se-

curity checkpoints. The goal of this work is to detect and automatically highlight

prohibited items in bags as well as determine the performance of these methods on

datasets collected for this study. Although the list of classes to detect for this re-

search effort is quite extensive, discussion will be limited to the detection of firearms

(e.g. guns) and sharps (e.g. knives).

In this paper, we describe methods and present results from an ongoing research

effort funded by the TSA to develop a deep learning based Automatic Threat Recog-

nition (ATR) system for airport checkpoint scanners. In Section 2.2, we describe

(1) the Smiths Detection platform used to collect the X-ray images and (2) the data

collection and labeling protocols. In Section 2.3, we introduce five deep object de-

tection models which we apply to the labeled data, as well as metrics for evaluating

system performance and the hardware set-up of the deployable prototype. For results

(Section 2.4), we show object detection metrics on firearms and sharps datasets, and

we demonstrate improvement by combining detection results from the multiple views

of a single scan. We also describe a test to extrapolate how such a prototype system

8

might perform when deployed in the field, showing threat detection alongside false

alarm rates.

2.2 Data Collection

2.2.1 Smiths Detection X-ray System

Data used for the training and testing of the ATR methods were collected by Smiths

Detection personnel using a Smiths Detection host X-ray system. The platform

is a cabinet X-ray security system that contains four separate pairs of 160 KeV

X-ray sources and detector arrays, arranged opposite each other around a tunnel.

Passenger bags and other belongings are carried through the tunnel by a conveyor

belt at a rate of 240 mm/sec. Each X-ray beam is collimated to a narrow width

for optimal resolution, while the X-ray line detectors are arranged linearly; radiation

emitted from the sources passes through the objects being scanned before reaching

the detectors. The system is dual-energy: the X-ray detectors measure intensity at

a high and low energy band. Image slices of a given view are assembled to produce

two grayscale images corresponding to the two energies (see Figures 2.1a and 2.1b),

yielding eight images in total across the four views. All training and evaluation were

performed on these low and high energy images.

Although outside the scope of this paper, for purposes of illustration it is helpful

to show color images, which make certain material characteristics easier to see with

the human eye. The images that are displayed to the TSOs at airport checkpoints

are post-processed color images that fuse the high and low energy scans to estimate

the effective atomic number, Z-effective, of materials along the X-ray path from

source to detector; Figure 2.1c shows the color image corresponding to the high and

low images in Figures 2.1a and 2.1b, respectively. The colors have been selected to

correspond to three different Z-effective bands. Orange corresponds to materials of

9

(a) (b) (c)

Figure 2.1: (a) High energy. (b) Low energy. (c) Color-mapped Material lumination.
Various image types generated by the Smiths Detection host X-ray system. Images
scanned with a laboratory prototype not in TSA configuration.

low Z-effective (e.g. organic materials), green corresponds to materials of medium Z-

effective (e.g. ceramics), and finally blue corresponds to materials of high Z-effective

(e.g. metals). The brightness (or intensity) of the color image reflects the absorption

(and thus provides information on relative thickness) of the materials. The process

for computing the colors is proprietary and uses a periodic calibration process to

assure consistent results.

While visually helpful to humans, it was found that the material color-mapped

RGB images do not provide any noticeable benefit to the deep learning algorithms.

We conjecture that this is because the color mapping is simply a transformation of

the high and low energy images, and deep learning is capable of effectively learning

its own representations. Because of these considerations, we use the high and low

energy images for training the model, but use color-mapped material lumination when

presenting results.

2.2.2 Images and Labeling

Two types of image data were used in the training of the ATR algorithm: non-threat

and threat. The non-threat data, referred to as Stream-of-Commerce (SOC) data,

10

were acquired over multiple days from real traffic at airport checkpoints. These data

are generally assumed not to contain any threats and represent negative examples

for training and false alarm evaluation. Positive training examples with threats were

collected on multiple occasions at the Transportation Security Laboratory (TSL) and

at a Smiths Detection laboratory. For this investigation, a total of 37 hand guns, 92

pocket knives, and 20 other mixed sharps were scanned in approximately 100 different

pre-packed bags. Guns and sharps of several sizes were considered. Over the course

of a few days, 2022 scans of guns, 1350 scans of pocket knives, and 706 scans of other

mixed sharps were acquired.

A systematic process was performed to acquire the data. Sets of bags were filled

with contents typical of passenger luggage, and a threat item was packed into each.

These bags were then scanned in multiple positions and orientations with the X-ray

system. Upon completion of a number a scans, the threat was typically moved to a

new bag in the bag sequence, and the scanning process was repeated. Two measures

were implemented to avoid overfitting on specific bags. First, bag contents were

periodically altered: this involved adding materials to the bag to inject clutter into

the scene or partially obscure the threat object in at least one view. Second, the bag

sets were rotated so that no single bag was scanned excessively throughout the data

collection. To ensure that the threat objects were scanned in multiple perspectives,

their location and orientation within the bags were also varied. This occurred while

moving the threats from one bag to the next during data collection. For instance, a

small gun that was laid flat (horizontally) in the center of Bag 1 may be placed along

the front of Bag 2 in a vertical orientation.

Most object detection algorithms are supervised, meaning that they require train-

ing data with labels in the format of the expected output. Within this context, this

means that both image scans of threats as well as threat localizations need to be col-

11

(a) (b) (c)

Figure 2.2: Example bounding boxes of firearms in red. Images scanned with a
laboratory prototype not in TSA configuration.

lected. Labeling of the training set was performed manually using a Smiths Detection

proprietary utility to draw an outline around each threat object. These outlines were

then used to create a binary mask of the threat object’s location. Since the methods

explored in this paper rely on bounding boxes rather than pixel-wise segmentations,

the min and max coordinates of these masks were used to generate bounding boxes

to train the model; see Figures 2.2 and 2.3 for examples.

2.3 Methods

2.3.1 Models

Virtually every state-of-the-art object detection algorithm begins with some form of

Convolutional Neural Network (CNN) operating as a feature extractor, followed by

some form of specialized architecture for producing bounding box coordinates and

classifications. The primary difference between these algorithms pertains to this latter

part. While there have been many object detection models that have been proposed

in recent years, we focus on a few popular models with high performance: Faster

Regions with Convolutional Neural Networks (Faster R-CNN) [RHGS15], Single Shot

12

(a) (b) (c)

Figure 2.3: Example bounding boxes of sharps in red; segmentation outlines also
visible in yellow. Images scanned with a laboratory prototype not in TSA configura-
tion.

MultiBox Detector (SSD) [LAE+16], and Region-based Fully Convolutional Networks

(R-FCN) [DLHS16].

For the convolutional feature extractor, many CNNs have been developed, pri-

marily designed for image classification; however, it has been shown that such CNNs

do indeed also work well for object detection [GDDM14] and that there is a positive

correlation between image classification and object detection performance [HRS+17].

However, classification accuracy is not the only consideration; networks with larger

numbers of parameters may have higher representational power, but are often com-

putationally slower as a result (see Table 2.1 for a comparison). Since maintaining

high throughput of bags at airport checkpoints is of interest, the algorithm cannot

take an arbitrarily long time to deliberate.

Each of the aforementioned object detection models, termed meta-architectures,

along with several different CNNs have been implemented in TensorFlow [AAB+15]

as part of Google’s Object Detection API [HRS+17], and we leverage these imple-

mentations as the basis for our experiments. Models vary from approximately 5 to

50 frames per second, depending on the CNN and detection meta-architecture. Note,

13

Table 2.1: Top-1 accuracy on ImageNet classification and model size for the CNNs
used in experiments [HRS+17].

CNN Top-1 Accuracy Number of parameters

MobileNet [HZC+17] 71.1 3,191,072

Inception V2 [IS15] 73.9 10,173,112

ResNet-101 [HZRS16] 76.4 42,605,504

Inception ResNet V2 [SIVA16] 80.4 54,336,736

the model must process all four views and perform additional overhead to acquire

and display the results, but even the slowest of these models still meets our target of

delivering results within one second.

We train each model entirely on data from a single class (firearms or sharps) and

report results individually. Each model can be run independently on a particular

scan to look for threats of a particular category. However, the models were originally

developed for multi-class discrimination, and nothing prevents us from doing the

same. Training separate models was due to the order in which data was collected

and annotated.

2.3.2 Evaluation Metrics

In order to quantify model performance, we borrow several common metrics from the

object detection and information retrieval literature:

• Intersection over Union (IoU): IoU is the ratio calculated by the intersection

(overlap) of two sets divided by their union. A value of 0 implies no overlap,

while a value of 1 means that the two sets are equal (Intersection = Union).

See Figure 2.4 for examples.

• True Positive (Tp): Defined as a correctly classified box that has an IoU above

14

a threshold (commonly 0.5) with a ground truth box1.

• False Positive (Fp): A proposed bounding box that either misses the classifica-

tion or is not tight enough to achieve an IoU above the set threshold.

• False Negative (Fn): A ground truth object that was not properly bounded and

classified.

• Precision (Tp
Tp+Fp

): The proportion of proposed bounding boxes (algorithm-

produced detections) that are correct.

• Recall (Tp
Tp+Fn

): The proportion of objects (ground-truth) that were correctly

detected by the algorithm.

• Average Precision (AP): The area under the curve (AUC) of the precision-recall

curve for a single class.

• mean Average Precision (mAP): The mean of the APs across all classes. For a

single class problem (as we consider here), the mAP is equivalent to the class

AP.

• Percent Correctly Localized (CorLoc): Percentage of positives correctly identi-

fied as a Tp by the model. Equivalently, the recall value for the point on the

precision-recall curve at which we choose to operate.

The latter two are reported for the quantitative results to compare performances.

Additionally, precision-recall curves are shown to give a sense of performance for

various operating thresholds.

1Often object detection algorithms produce many bounding boxes with high IoU with the ground
truth object. While these are all technically correct, this kind of output is not as desirable, so
often only one true positive is allowed per ground truth. Non-maximal suppression [NV06] is
typically used to cut down the number of “repeat” detections for a single object.

15

(a) (b) (c)

Figure 2.4: Ground truth boxes shown in green; generated detection boxes shown
in red. Images scanned with a laboratory prototype not in TSA configuration. (a)
IoU = 0.92, alarm is above IoU threshold, resulting in a Tp. (b) IoU = 0.43, alarm is
too big, resulting in a Fp and a Fn. (c) IoU = 0.31, alarm is too small, resulting in a
Fp and a Fn.

2.3.3 Multi-View Evaluation

Many X-ray systems have several X-ray detector lines, providing orthogonal views of

a bag. As alluded to in Section 2.2.1, the Smiths Detection host X-ray system used for

data collection provides four views, meaning each scan results in four images. While

these can be treated independently during ATR, this ignores spatial correlations of

objects between views (see Figure 2.5). In the field, TSOs do not ignore threats

which appear in only a single view, so we can consider the performance of the ATR

if we apply an OR-gate to detections in scans. This means a Tp is only required in

one out of four scans, while all Fps are counted the same as in single-view evaluation.

Figure 2.5: Four views generated during a scan. The Y-axis is the conveying direc-
tion. Images scanned with a laboratory prototype not in TSA configuration.

16

Multi-view performance is estimated through two perspectives: object detection

and real-world threat recognition. For each, the deep learning object detection algo-

rithm is first run on all views of each scan independently. Performance is then scored

accordingly, depending on the metric. Deep learning object detection literature is pri-

marily concerned with the concept of information retrieval: there are ground truth

objects in each image, and the goal is to tightly bound as many as possible while

avoiding false positives and mislabeled objects. mAP and CorLoc capture these ob-

jectives. For the implications of ATR in the field, we choose to analyze detection

and false alarm rates on a per bag basis. In Section 2.4.2 we discuss results of multi-

view to object detection metrics, and in Section 2.4.3, we show simulated real-world

performance and the corresponding false alarm rates.

2.3.4 Hardware Implementation

The object detection models are trained on labeled data with a NVIDIA Titan X

GPU. After training has converged, learned model weights are saved for inference.

Training and evaluation of images can be conducted with a pre-scanned and labeled

dataset on any workstation set-up with enough computational power. Results shown

throughout the rest of this paper were evaluated offline on a held-out test set, for

speed and reproducibility.

The end goal, however, is to deliver a system that can be deployed to airport

security checkpoints. Therefore, initial laboratory prototypes pipe scanned images to

a GPU and computer bolted to the exterior of the X-ray scanner to compute threat

locations, which are then sent back and projected on top of the color images on the

main display. As part of this effort, such a prototype system has been demonstrated

to TSA sponsors in a setting and manner consistent with anticipated evaluation and

possible field use.

17

2.4 Results

2.4.1 Object Detection Evaluation: Single View

ATR performance was first evaluated using object detection metrics (mAP, CorLoc),

treating all four views generated from a single bag as independent images. Images

were randomly shuffled into a roughly 70:10:20 training:validation:test split at the

bag level, ensuring views of the same bag ended up in the same split.

Firearms

With a single view, all tested object detection models do well on a dataset of 2022

firearms scans (see Figure 2.6a and Table 2.2). An SSD model with a MobileNet V1

convolutional feature extractor, designed for speed and compactness, has the lowest

mAP and CorLoc, but still achieves 0.9393 and 0.9295 respectively. Faster R-CNN

with ResNet101 achieves the highest mAP of 0.9644, while R-FCN with ResNet101

has the highest CorLoc of 0.9550.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

SSD: Mobilenet V1
SSD: Inception V2
Faster R-CNN: Inception ResNet V2
Faster R-CNN: ResNet101
R-FCN: ResNet101

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

SSD: Mobilenet V1
SSD: Inception V2
Faster R-CNN: Inception ResNet V2
Faster R-CNN: ResNet101
R-FCN: ResNet101

(b)

Figure 2.6: Precision-recall curve of each objection model on (a) firearms and (b)
sharps data. Curves approaching the upper right corner imply better performance.

18

Table 2.2: Performance of each object detection model on firearms and sharps,
treating all views as independent images. Best values for each class category and
metric are bolded.

Firearms Sharps
Model mAP CorLoc mAP CorLoc

SSD: MobileNet V1 [LAE+16, HZC+17] .9393 .9295 .6463 .6872

SSD: Inception V2 [LAE+16, IS15] .9621 .9514 .6575 .6828

Faster R-CNN: Inception ResNet V2 [RHGS15, SIVA16] .9546 .9478 .8003 .7775

Faster R-CNN: ResNet101 [RHGS15, HZRS16] .9644 .9514 .7863 .7621

R-FCN: ResNet101 [DLHS16, HZRS16] .9591 .9550 .7884 .7753

Sharps

In Figure 2.3, we show results of single-view evaluation for all 5 object detection

models on a dataset of 20 mixed open and closed blades in baggage. The dataset

contains 274 scans of fixed-blade knives, 210 scans of pocket knives, 74 scans of

scissors, and 148 scans of tools with sharp edges. The ground truths for all of these

sharps were used to train a single-class sharps detector and then tested on held-out

test scans.

Sharps pose several challenges different from firearms. By visually comparing

Figures 2.2 and 2.3, it can be seen that knives provide a much smaller profile for the

algorithm to find. Furthermore, depending on the sharp’s orientation and surround-

ings, some views may be uninformative if the X-ray beam hits a knife edge-on or

traverses through the handle and down the blade; knives, with their smaller size and

thin aspect ratio, are also easily obscured by common opaque objects, such as metal

ribbing or bottles. As such, we expect performance on par with firearms to require

additional effort, and both Figure 2.6b and Table 2.2 illustrate this. In particular, it

appears that the SSD models do much worse than the other models. We hypothesize

that this is due to the smaller number of knives training samples and higher varia-

tion in aspect ratios of bounding boxes relative to firearms being exacerbated by the

19

way learned variables are arranged in the SSD architecture. More investigation is

necessary to draw any concrete conclusions.

2.4.2 Object Detection Evaluation: Multi-View

At this time, ATR performance on firearms is much better than sharps. Part of

the lower performance on sharps may be due to uninformative views of the threat

being more likely for thinner objects. However, as noted in Section 2.2.1, the Smiths

Detection host X-ray system provides four different angles of the same object, po-

tentially offering clearer perspectives of an object occluded in one such view. By

using the information combination scheme (OR-gate) outlined in Section 2.3.3, we

see a substantial jump in performance (Figure 2.7, Table 2.3). A similar scheme

can be employed for firearms, but we omit this here because of the already excellent

performance with a single view.

Figure 2.7 shows the gain in precision-recall for multi-view evaluation applied to

the same results which were presented with single-view evaluation in Section 2.4.1,

while Table 2.3 shows the gain in mAP by considering multi-view evaluation. For the

largest network, the Faster R-CNN with Inception ResNet V2, the mAP increased

by 19.2% to .9347.

Table 2.3: Performance on knives, incorporating all views as described in Section
2.3.3. Better performance for each model bolded.

mAP-Independent Views mAP-Multi-View

SSD: MobileNet V1 [LAE+16, HZC+17] .6425 .7852

SSD: Inception V2 [LAE+16, IS15] .6541 .8020

Faster R-CNN: Inception ResNet V2 [RHGS15, SIVA16] .7836 .9347

Faster R-CNN: ResNet101 [RHGS15, HZRS16] .7837 .9283

R-FCN: ResNet101 [DLHS16, HZRS16] .7976 .9383

20

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

SSD: Mobilenet V1

Independent
Multi-view

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

SSD: Inception V2

Independent
Multi-view

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

Faster R-CNN: Inception ResNet V2

Independent
Multi-view

(c)

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

Faster R-CNN: ResNet101

Independent
Multi-view

(d)

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

R-FCN: ResNet101

Independent
Multi-view

(e)

Figure 2.7: Performance gain of the precision-recall curve (orange dotted line) for
each model by incorporating all four views for the sharps dataset. Each of the blue
lines correspond to one of the colored lines in Figure 2.6b, which were computed
using single-view evaluation. Curves further up and to the right indicate better
performance.

2.4.3 Detection vs False Alarm Evaluation

As proof-of-concept and to demonstrate feasibility, a trained Faster R-CNN with

ResNet101 was evaluated on a combined test set comprised of 260 pocket knife scans,

1300 firearm scans, and 15000 real SOC scans, which are assumed to not contain

firearms or sharps. For this experiment, we considered detection and false alarm

rates at the bag level. An alarm satisfying the Tp criteria in Section 2.3.2 in any of

the four views resulted in the entire bag being labeled as a detection. False alarm rate

was calculated as the proportion of bag scans where any of the four views had a Fp

bounding box produced by the object detection algorithm; if there are multiple false

alarm bounding boxes produced, the scan still only counts as a single false alarm. In

some sense, this approach is more amenable to the security checkpoint application,

as a single alarm in any views should be cause for a TSO to investigate further. For

21

the data collected in this study, the ATR captures 91.9% of views containing firearms

at a 1% false alarm rate and 89.8% of sharps at a 3% false alarm rate with single-

view evaluation. However, by utilizing all four views, the ATR algorithm is able to

capture 95.5% of bags containing firearms at a 1% false alarm rate and 94.0% of bags

containing sharps at a 3% false alarm rate.

2.5 Conclusions

Despite major advances in threat detection for aviation security, there are still chal-

lenges regarding both operator and algorithm efficiency detecting many prohibited

items. Of special interest are weapons such as firearms and knives, which continue to

be frequently encountered by TSOs. Results of applying deep learning techniques to

this setting both in offline computer testing and live demonstrations indicate that this

approach can detect prohibited items with high accuracy, minimal false alarm rates,

and no adverse impact to passenger throughput, especially for firearms detection. A

simple multi-view evaluation has also been demonstrated to improve performance,

especially for items like sharps, which may be difficult to spot in just a single view.

A more sophisticated algorithm that combines information between views may do

even better, but we leave this to future work.

Ultimately, a goal of the TSA is to lessen the burden on the TSOs by institut-

ing a computer-aided CONOPs where TSOs only have to review on alarm, or even

transition to an entirely automated system. To achieve this, a wider range of prohib-

ited items are being targeted in future work. These items, including blunt weapons,

precursors, and flammable liquids, come in almost infinitely many variations in size,

shape, texture, and materials, but given the promise shown by deep learning in this

initial study, Smiths Detection and the TSA are well positioned to bring ATR systems

able to detect such classes to airport checkpoints in the near future.

22

Chapter 3

Toward Automatic Threat Recognition

for Airport X-ray Baggage Screening with

Deep Convolutional Object Detection

3.1 Introduction

The Transportation Security Administration (TSA) oversees the safety of the trav-

eling public in the United States of America. One of the most visible functions of

the TSA is security screening of travelers and their personal belongings for poten-

tial threats. Handsearching each passenger’s bag would be both time-consuming and

intrusive, so X-ray scanner systems such as the Rapiscan 620DV are deployed to re-

motely provide an interior view of baggage contents. Many real threats are captured

nationwide: in 2018, for example, 4239 firearms were found in carry-on bags, and

more than 80% of these were loaded [Wag20]. These numbers have steadily grown

in recent years as air traffic has continued to increase nationally. The capability of

finding these objects effectively is an important concern for national security.

Currently, the detection of prohibited items relies on Transportation Security

Officers (TSOs) to visually pick out these items from displayed image scans. This

is challenging for several reasons. First, the set of prohibited items that TSOs must

identify is quite diverse: firearms; sharp instruments; blunt weapons; and liquids,

aerosols, and gels (LAGs) with volumes exceeding the TSA-established thresholds all

pose security concerns. Second, the majority of scans are benign, yet TSOs must

remain alert for long periods of time. Third, because X-ray scans are transmission

images, the contents of a bag appear stacked on top of each other into a single, often

23

cluttered scene, which can render identification of individual items difficult. The

Rapiscan 620DV provides dual perpendicular views to ameliorate this problem, but

depending on the orientations, views can still be non-informative. Finally, given the

need to maintain passenger throughput, evaluation of a particular scan should not

take excessively long.

For the aforementioned reasons, an automatic threat detection algorithm to aid

human operators in locating prohibited items would be useful for the TSA, especially

if it can be readily integrated into the existing fleet of deployed scanners. Funda-

mentally, the TSOs both localize and identify dangerous items in an image, which

are the same objectives of object detection [GDDM14, Gir15, RHGS15, LAE+16,

DLHS16, HRS+17]. Object detection has long been considered a challenging task for

computers, but advances in deep learning [GBC16] in recent years have resulted in

enormous progress. Specifically, CNNs [LBD+89] have proven extremely useful at ex-

tracting learned features for a wide variety of computer vision tasks, including object

detection. As a result, the TSA is interested in assessing the feasibility of deploying

algorithms that can automatically highlight objects of interest to TSOs [TSA17].

Most deep learning methods require a large training dataset of labeled examples to

achieve good performance [SSSG17]; for object detection, this means data comprising

both images and bounding boxes with class labels. While many such datasets exist

for Red-Green-Blue (RGB) natural scenes (e.g. [EVW+10, LMB+14, COR+16]), none

contain threats in X-ray luggage, and so a sizable data collection effort was necessary

for this endeavor. We assembled a large variety of cluttered bags (e.g. clothing,

electronics, etc.) with hidden threats (firearms, sharps, blunts, LAGs), and scanned

these with the Rapiscan 620DV. Each threat in the scans was then annotated with

a tight bounding box and labeled according to class. This dataset was then used for

training and evaluating object detection models.

24

Figure 3.1: Example scans of bags in false color containing a firearm (handgun),
sharp (knife), blunt (crow bar), and LAG (bottle of liquid), from the left to right,
with (top row) top view and (bottom row) side view shown. Ground truth locations
of threats in each image are bounded with a red box. Scans produced by a laboratory
prototype not in TSA configuration.

In this work, we present the results of a research effort in collaboration with

the TSA to develop a deep learning-based automated threat detection system. We

first describe the Rapiscan 620DV scanner and the data collection process. We then

introduce the deep learning algorithms we used to perform object detection and how

we integrated them into a Rapiscan 620DV prototype, for live testing. Finally, we

present experimental results on a number of models we tested on the collected data.

The resulting prototype system has shown great promise, and technology like this

may one day be deployed by the TSA to airports nationally.

3.2 Data Collection

3.2.1 Rapiscan 620DV X-Ray Scanning System

The Rapiscan 620DV X-ray screening system is designed for aviation and high-

security applications. It comprises a tunnel 640 mm wide and 430 mm high, equipped

25

with a 160 kV / 1 mA X-ray source that achieves a steel penetration of 33mm and

a wire resolution of about 80 micrometers (40 American Wire Gauge). The scanner

produces two views through the near-orthogonal orientation of the fan-shaped beams

from the X-ray sources. These projections generate a horizontal and vertical view of

the object under inspection, both of which can be used to identify the contents of a

bag. X-ray detectors collect both high and low X-ray energy data, which allows for

material discrimination. Examples are shown in Figure 3.1.

While it is possible to use the high and low energy image scans as direct inputs

to our model, we instead choose to use the pre-processed RGB coloration typically

shown to human TSOs. This coloring uses the relationship between the linear at-

tenuation coefficient and photon energy to estimate effective atomic number (Z),

transforming the image into one where material properties can be more readily in-

ferred: for example, organic materials tend to have low Z, while metallic materials

tend to have higher Z. According to Rapiscan’s proprietary coloring scheme, metallic

objects are colored blue, organic materials are tinted orange, and materials with ef-

fective Z (Zeff) between these two are shaded green. Using this false coloring as our

input achieves two objectives: (i) encoding of additional human knowledge of mate-

rial properties, which are highly informative for threat detection (firearms, sharps,

and blunts, for example, often contain metallic components) and (ii) aligning the

image input color distribution closer to the pre-trained weights, which were trained

on RGB natural scenes.

3.2.2 Scan Collection and Annotation

Baggage scans were collected at various sites, occurring over multiple collection

events. This data collection targeted several of the TSA’s designated threat cat-

egories: firearms (e.g. pistols), sharps (e.g. knives), blunts (e.g. hammers), and

26

Table 3.1: Total number of unique threat items and number of images collected for
each threat.

Threat Type Total Threats Total Images

Blunts 10 3366
Firearms 43 (assembled) + 19 (disassembled) 3480

LAGs 70 3456
Sharps 40 3484

LAGs (e.g. liquid-filled bottles). A diverse set of unique items from each class were

selected to provide coverage for each threat type; for example, the firearms set in-

cluded both assembled and disassembled guns. To simulate the diversity of real-world

traffic, a variety of host bags was used, including roller, laptop, and duffel bags. Each

was filled with diverse assortments of benign items, such as clothing, shoes, electron-

ics, hygiene products, and paper products. Threats were added to each host bag in

different locations and orientations, as well as with imaginative concealments, to sim-

ulate the actions of potentially malicious actors. Under the assumption that threat

objects are typically rare, most bags contained only one threat, as in the examples

shown in Figure 3.1.

Given the time-consuming nature of assembling bags for scanning, a single bag

was used to host different unique threats for multiple scans, with a minor exchanging

of benign clutter between insertions. Each bag was also scanned in several different

poses (e.g. flipped or rotated). These strategies allow for more efficient collection of

more scans and encourage our models to learn invariance to exact positioning within

the tunnel. Total number of threats scanned are summarized in Table 3.1.

After the scans were collected, each image was hand-annotated by human labelers,

where each label consisted of both the threat class-type, as well as the coordinates

of the bounding box. Each box was specified to be as tight as possible in each view,

while still containing the full object; in the case of objects like sharps and blunts,

27

this definition included the handle, for instances in which there was one. In total,

the entire data collection effort of assembling, scanning, and labeling bags took over

400 worker hours.

3.3 Methods

3.3.1 Convolutional Neural Networks

The advent of deep convolutional neural networks (CNNs) [LBD+89] has resulted

in a quantum leap in the field of computer vision. Across virtually all computer

vision tasks, the incorporation of CNNs into model designs has resulted in signifi-

cant performance gains; consequently, CNNs play a significant role in almost every

recent computer vision algorithm. Unlike classical methods that rely upon carefully

selected, human-engineered features, machine learning (and deep learning) methods

learn these features from the data itself. CNNs in particular are designed to learn hi-

erarchical representations [ZF14], resulting in a feature extractor that produces highly

informative, abstract encodings that can be used for downstream tasks, such as clas-

sification [KSH12]. Additionally, the learned visual features are highly transferable:

for example, CNN weights learned for the classification task of ImageNet [DDS+09]

can serve as a good initialization for other datasets or even other related computer

vision tasks [YCBL14, RASC14, GDDM14]. Doing so can considerably reduce the

number of training examples needed for the desired task. In the setting of automatic

threat detection at TSA checkpoints, this is especially significant, as we must assem-

ble, scan, and label each training sample ourselves; pre-trained networks allow us to

significantly cut down man-hours and costs.

There are several design considerations for CNNs. Most obvious is model perfor-

mance: how good are the features the CNN extracts for the downstream task? In

general, there is a positive correlation between the number of CNN layers (depth) and

28

Table 3.2: ImageNet classification accuracy and number of parameters for each of
the CNN architectures considered in our experiments. Adapted from [HRS+17].

CNN Architecture Top-1 Accuracy Number of parameters

Inception V2 [IS15] 73.9 10.2 M
ResNet-101 [HZRS16] 77.0 42.6 M
ResNet-152 [HZRS16] 77.8 58.1 M

Inception ResNet V2 [SIVA16] 80.4 54.3 M

Data Acquisition

•Produce X-ray data
from dual-energy
transmission in two
complementary views

Material
Characterization

•Calculate 𝑍"##
per pixel from
dual energy
attenuations

Image Creation

•Assign color to
every pixel
based on 𝑍"##

Object Detection
Inference

•Run trained
forward model
on 𝑅𝐺𝐵 image

Image and Alarm
Display

•Display 𝑅𝐺𝐵
image with
alarms for TSO

Figure 3.2: Diagram of the prototype Rapiscan 620DV X-ray screening system
with threat recognition capability. Dual-energy X-Ray information yields false-color
images of two views, which are fed to a trained deep convolutional object detector.
Detections above threshold are displayed for the user. Scans produced by a laboratory
prototype not in TSA configuration.

parameters with overall performance [SZ15, HZRS16], though architectural choices

can play a significant role as well [ZVSL18]. However, finite hardware memory and

processing time limit model size. We consider several popular CNN architectures in

our experiments, summarized in Table 3.2.

3.3.2 Object Detection

Localizing and classifying objects in a scene is a canonical research area in computer

vision. In this context, localization refers to the production of a bounding box which

is as tight as possible while still containing the entire object, while classification is

29

the identification of which of a pre-determined set of classes the object belongs to.

Formally, given an image X, the goal of object detection is to predict the class ci

of each object indexed by i, as well as the center and dimensions (xi, yi, wi, hi) of a

bounding box.

Modern object detectors are almost exclusively built upon CNN backbones. The

specific CNN architecture used is often readily interchangeable, with the choice of

CNN depending on the trade-off between accuracy with speed and memory. How

predictions are made from the features extracted by the CNN can vary, and various

object detection meta-architectures [HRS+17] have been recently proposed, of which

we highlight two notable ones here.

Faster R-CNN: Faster R-CNN [RHGS15] makes predictions in a two-stage pro-

cess. In first stage, called the Region Proposal Network (RPN), a set of reference

boxes of various sizes and dimensions (termed anchor boxes) are tiled over the entire

image. Using features extracted by a CNN, the RPN assigns an “objectness” score

to each anchor based on how much it overlaps with a ground-truth object, as well as

a proposal of how each anchor box should be adjusted to better bound the object.

The Np box proposals with highest objectness scores are then passed to the second

stage, where Np is a hyperparameter controlling the number of proposals. In the

second stage, a classifier and box refinement regressor yield final output predictions.

Non-maximal suppression reduces duplicate detections.

SSD: Unlike Faster R-CNN, which performs classification and bounding box

regression twice, Single-stage detectors like SSD [LAE+16] combine both stages. This

eliminates the proposal stage to directly predict both classes and bounding boxes at

once. This reduction tends to make the network much faster, though sometimes at

the cost of accuracy.

30

Table 3.3: Inference speed and mAP of the considered feature extractor and meta-
architecture combinations. Timing measured on a Nvidia GeForce GTX 1080 Graph-
ical Processing Unit (GPU).

Model Speed (s/scan) mAP Sharps Blunts Firearms LAGs

SSD-InceptionV2 0.042 0.7523 0.408 0.918 0.757 0.907
Faster-RCNN-ResNet101 0.222 0.9166 0.766 0.976 0.944 0.973
Faster-RCNN-ResNet152 0.254 0.9244 0.786 0.980 0.947 0.976

Faster-RCNN-InceptionResNetV2 0.812 0.9410 0.818 0.983 0.962 0.985

3.3.3 Evaluation

The two-part nature of the object detection task–localization and classification–

requires evaluation metrics that assess both aspects of detections. The quality of

an algorithm-produced predicted box (Bp) with a ground-truth bounding box (Bgt)

is formalized as the IoU = area(Bp ∩Bgt)/area(Bp ∪Bgt).

A Tp, Fp, and Fn are defined in terms of the IoU of a predicted box with a

ground-truth box, as well as the class prediction. A true positive proposal is a

correctly classified box that has an IoU above a set threshold (e.g. 0.5), a false

positive proposal either misclassifies an object or does not achieve a sufficiently high

IoU, and a false negative is a ground-truth object that was not properly bounded

(with respect to IoU) and correctly classified.

At a particular IoU threshold, the precision and recall of the model may be

computed as the proportion of proposed bounding boxes that are correct and the

proportion of ground truth objects that are correctly detected, respectively. These

quantities are: Precision = Tp/(Tp+Fp), Recall = Tp/(Tp+Fn). Precision-recall (PR)

curves are constructed by plotting both quantities over a range of operating point

thresholds. We present these curves in Section 3.5 to provide a sense for model

performance. Additionally, we may quantitatively summarize model performance

through mAP. AP is the AUC of the PR curve for a single class, and mAP is the

mean of the APs across all classes.

31

3.3.4 Rapiscan 620DV Integration

In order to take a concrete step towards the TSA’s goal of potentially deploying

the deep learning-based automated threat detector, we also worked to integrate the

algorithm with the Rapiscan 620DV. The Rapiscan 620DV has an onboard computer

and monitors to construct and display images from the output of the X-ray photon

detectors, as well as algorithms for explosives detection. We wish to leave these

functionalities untouched, simply overlaying an additional detection output on screen.

Therefore, we pipe the constructed scan images to our model, perform inference, and

project the predictions to the display (see Figure 3.2).

To achieve threat recognition, we export a trained model and run it in parallel with

existing software. The system computer hardware was upgraded to an Intel i7 CPU

and a Nvidia GeForce GTX 1080 GPU in order to support the TensorFlow [AAB+15]

implementation of the model graph. This allows for a single integrated machine

to perform all of the computation for the 620DV, unlike previous implementations

that require an additional auxiliary machine to perform the deep neural network

computation [LHG+18]. While the resulting integrated system has been used for

live demos, the experimental results we report in this paper were computed with a

held-out test set.

3.4 Related Work

The development of computer-aided screening for aviation security has garnered much

attention in the past two decades. We focus here specifically on efforts to locate and

classify potential threats in X-ray images.

Initial work using machine learning to classify objects in X-ray images leveraged

hand-crafted features fed to a traditional classifier such as a Support Vector Machine

(SVM). In particular, [BYB11] used Bag-of-Visual-Words (BoVW) and an SVM to

32

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

SSD: Inception V2
Faster R-CNN: ResNet101
Faster R-CNN: ResNet152
Faster R-CNN: Inception ResNet V2

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

SSD: Inception V2
Faster R-CNN: ResNet101
Faster R-CNN: ResNet152
Faster R-CNN: Inception ResNet V2

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

SSD: Inception V2
Faster R-CNN: ResNet101
Faster R-CNN: ResNet152
Faster R-CNN: Inception ResNet V2

(c)

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

SSD: Inception V2
Faster R-CNN: ResNet101
Faster R-CNN: ResNet152
Faster R-CNN: Inception ResNet V2

(d)

Figure 3.3: PR curves for four meta-architecture/feature extractor combinations.
(a) Sharps, (b) Blunts (c) Firearms (d) LAGs.

classify X-ray baggage with feature representations such as Difference of Gaussians

(DoG) in conjuction with scale-invariant feature transform (SIFT) [Low99]. Fur-

ther BoVW approaches are used for classification in [TMB13], [BBB13], [MSA16],

[KAD+16].

While deep learning has been applied to general image analysis for at least a

decade, its adoption for X-ray security image analysis is relatively recent. Still, there

are several works that apply deep learning to baggage screening. In [RJMG17],

the authors provide a review of methods for automating X-ray image analysis for

cargo and baggage security, pointing to the use of CNNs as a promising direction.

The first application of deep learning to an X-ray baggage screening context was

for classifying manually cropped regions of X-ray baggage images that contained

different classes of firearms and knives, with additional benign classes of camera and

laptop [AKDB16]. To perform classification, [AKDB16] fine-tuned a pre-trained

33

CNN to their unique datasets, leveraging transfer learning to improve training with

a limited number of images compared to the size of datasets that CNNs are typically

trained on. In [AKDB16], the authors compare their classification performance to

the BoVW methods mentioned above.

The work of [AKDB16] is extended in [AB17, AKWB18] to examine the use of

deep object detection algorithms for X-ray baggage scans. The authors address two

related problems: binary identification of objects as firearms or not and a multiclass

problem using the same classes as [AKDB16]. They expand the CNN classification

architectures investigated to include VGG [SZ15] and ResNet [HZRS16], and they

further adapt Faster R-CNN [RHGS15], R-FCN [DLHS16], and YOLOv2 [RF17] as

CNN-based detection methods to X-ray baggage. However, these experiments were

done in simulation on pre-collected datasets, without any integration into the scanner

hardware. They also do not take advantage of the X-ray scanner’s multiple views.

Concurrent with this work, the TSA has sought to incorporate deep learning sys-

tems at U.S. airport security checkpoints in other efforts. In [LHG+18], the authors

present data collection efforts for firearms and sharps classes and compare the perfor-

mance of five object detection models. Relative to [LHG+18], we also include blunt

weapons and LAGs categories, and we train a single four-class detector, rather than

training an individual detector for each category.

3.5 Experiments

For our experiments and in-system implementation, we use Google’s code

base [HRS+17] of object detection models, implemented in TensorFlow [AAB+15].

We initialize each model with pre-trained weights from the MSCOCO Object De-

tection Challenge [LMB+14] and then fine-tune them to detect each of the target

classes (firearms, sharps, blunts, LAGs) simultaneously, which allows us to perform

34

(a)

0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io

n

(b)

Figure 3.4: (a) Heatmap indicating density of bounding box dimensions for the
training set. Various anchor box distributions are shown; each color indicates a dif-
ferent anchor box experimental setting. Natural image defaults in blue. (b) Precision-
recall curves for default anchor boxes and engineered set on sharps. Colors correspond
to the distributions shown in (a).

detection four times as fast as if we trained a separate algorithm for each. Since

we initialize with weights pre-trained on MSCOCO, we pre-process each image by

subtracting from each pixel the channel-means of the MSCOCO dataset; this aligns

our pre-processing with that performed on images for the MSCOCO Challenge.

For all Faster R-CNN algorithms, we use a momentum optimizer [Qia99] with

a learning rate of 0.003 for 130,000 steps, reducing it by a factor of 10 for 40,000

steps, and reducing by another factor of 10 for a final 30,000 steps. For the SSD

model, we used 200,000 steps of an RMSprop optimizer [HSS12] with an exponential

decay learning rate starting at 0.003, and decaying by 0.9 every 4000 steps. During

training, a batch size of 1 was used for all Faster R-CNN models, and a batch size of

24 was used for SSD.

From the 13, 786 images collected, we create a 70/10/20 train-validation-test split,

which we use for all experiments. We take care to ensure the two images (views) of

a particular bag remain in the same split.

35

0.7 0.8 0.9 1.0
Recall

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io

n

(a)

0.80 0.85 0.90 0.95 1.00
Recall

0.80

0.85

0.90

0.95

1.00

Pr
ec

is
io

n

(b)

0.80 0.85 0.90 0.95 1.00
Recall

0.80

0.85

0.90

0.95

1.00

Pr
ec

is
io

n

(c)

0.80 0.85 0.90 0.95 1.00
Recall

0.80

0.85

0.90

0.95

1.00

Pr
ec

is
io

n

Single-View
Multi-View

(d)

Figure 3.5: Precision-recall comparison of single view (blue) versus with multi-view
(orange) detection for (a) sharps (c) blunts (c) firearms (d) LAGs . Note that the
multi-view graphs shown here are a choice of analysis, and not a different technique.
The training and inference of Faster R-CNN are the same in both traces.

3.5.1 Feature Extractor and Meta-architecture

As discussed in Section 3.3, there are many options for both CNN feature extractor

and the object detection meta-architecture, each with its own advantages and dis-

advantages. See [HRS+17] for extensive comparisons on MS COCO [LMB+14]. For

the collected X-ray scan dataset, we choose to analyze several high-performing com-

binations. Detection performance is measured in terms of AP for each of the classes

of interest, and mAP for overall performance is also calculated. We also measure

36

processing time per scan to project practical passenger wait times.

We summarize the results in Table 3.3 and Figure 3.3. Overall, Faster R-CNN

with Inception ResNet V2 has the highest mAP, while SSD with Inception V2 per-

formed the worst. In general, faster models are less accurate, which may be seen in

the “Speed” column of Table 3.3. Faster R-CNN with the two smaller feature ex-

tractors (ResNet101 and ResNet152) achieve nearly the same performance on sharps

as ResNet Inception V2, but at more than three times the speed. While the speed of

single-stage models is suitable for video frame rates, we found this to be unnecessary

for checkpoint threat recognition and to sacrifice too much accuracy.

3.5.2 Anchor Boxes

As discussed in Section 3.3.2, bounding box predictions are typically made relative

to anchor boxes tiled over the image. The object detection algorithms we have

considered were primarily designed for finding common objects (e.g. people, ani-

mals, vehicles) in natural scenes, with datasets like PASCAL VOC [EVW+10] or MS

COCO [LMB+14] in mind.

The anchor box distribution is commonly held to act as a kind of “prior” over

the training data. In YOLO V2 [RF17], anchors are learned by k-means clustering,

and some of the performance gains of this model are credited to this improvement.

We chose several configurations of anchor boxes to better match the distribution of

our training data, and display those configurations alongside training dataset bound-

ing box dimension density in Figure 3.4a. The dataset used for these experiments

was smaller than the dataset used for the main findings as described in Table 3.1.

Training, test, and validation sets were drawn from a pool of images containing 2768

Sharps, 1788 LAGs, 1800 Blunts, and 3080 Firearms. This does not impact our

conclusions stated in the next paragraph.

37

Table 3.4: Single View versus Effective Multiple View APs.

Threat Single View AP Multiple Views AP
Sharps 0.786 0.935
Blunts 0.980 0.995

Firearms 0.947 0.984
LAGs 0.976 0.994

During model validation, some of these configurations showed modest gains for

sharps, but these did not generalize during testing. The sharps class PR curves for

the anchor box distributions in 3.4a are shown in 3.4b. We find that performance is

robust to different anchor configurations, showing that even with a different box size

distribution, Faster R-CNN is able to learn accurate bounding box regressors.

3.6 Discussion

The results we have shown bear implications for a pilot real-world deployment of

this technology. In Table 3.3, we showed test AP on sharps and timing for four

feature extractor/meta-architecture pairs. In a possible real-world system, we strive

for inference rates which would not impact screening time and security checkpoint

throughput. Because of the long evaluation time of the Faster R-CNN with Incep-

tionV2 model (∼ 800 ms seconds per bag), we recommend use of Faster R-CNN with

ResNet152 (∼ 250 ms per bag) for its performance/speed tradeoff. For the remainder

of the Discussion section, we will show results only from this model.

3.6.1 Multiple View Redundancy

Unlike typical object detection research benchmarks, the Rapiscan 620DV provides

two views along nearly perpendicular axes of the same scanned object. Within the

context of threat detection in X-ray images, this is especially important, as individual

views may occasionally be uninformative due to perspective or clutter. Leveraging

38

(a) (b) (c)

(d) (e) (f)

Figure 3.6: Sample detections from the Faster R-CNN model with ResNet152 as
the feature extractor. Ground truth bounding boxes are shown in red. (a-b) Sharp
detection. (c-d) Firearm detection. (e) Blunt weapon detection. (f) LAG detection.
The color of predicted box and the label indicate the predicted class. Scans produced
by a laboratory prototype not in TSA configuration.

the two separate views can improve overall performance.

In order to account for the multiple views, we consider a true positive in any view

to be a true positive in all views. False positives are added independently across all

39

views. Note that this is not describing a change to the training of the algorithm, nor

the inference process. Rather, by performing our analysis in this way, we hope to

better represent how the system might work in a potential real-world deployment,

when both views are available to a TSO. We show the improvements in PR between

single-view and multi-view evaluation in Figure 3.5 and summarize the AP in Table

3.4.

3.6.2 Sample Detections

In Figure 3.6, we display selected detections from the fully trained Faster R-CNN

with ResNet152 as the feature extractor, for a number of threat classes.

In Subfigures (3.6a-3.6b), we display two views of the same scan. The very small

profile of the folding knife in one view (3.6b) makes detection challenging for the

trained object detector (though there is a low-confidence false alarm). However, the

knife presents a more clear profile in Subfigure 3.6a, and is detected there. This

motivates what we call “multi-view” analysis, which we discuss further in Section

3.6.1.

Subfigure 3.6e shows a blunt threat which is detected twice. The larger detection,

which encompasses the head and handle of a hammer, is a True Positive, because the

IoU of this detection is greater than 0.5. The other detection in this image, however,

only covers the hammer’s head. While the presence of the hammer merits an alarm,

the detection does not overlap enough with the ground truth, and is therefore a False

Positive. Some of the training data included hammer heads disconnected from a

handle. It may be harder for the CNN to learn to bound hammers with handles or

hammer heads only.

To demonstrate detections of the remaining threat classes Subfigure 3.6f shows a

detected LAG, and Subfigures 3.6c and 3.6d show scans with firearms. Note that the

40

machine pistol in Subfigure 3.6d is not as well localized, compared to the firearm in

3.6c, likely due to the obscuring presence of a laptop. However, such an alarm still

makes the threat readily visible to a human operator.

3.7 Conclusions

We have investigated use of state-of-the-art techniques for the challenging task of

threat detection in bags at airport security checkpoints. First, we collected a sig-

nificant amount of data, assembling by hand many bags and bins which simulate

everyday traffic. These concealed a wide variety of threats. We scanned each bag to

produce X-ray images, and annotated both views of the scan. We then trained mul-

tiple modern object detection algorithms on the collected data, exploring a number

of settings and engineering them for the task at hand. We have presented the results

of evaluating the model on held-out validation and test data.

In general, we do not find single stage methods to be accurate enough as a security

screening method, and their frame rate advantages are superfluous in this application.

There are variants of the Faster R-CNN which can run on commercially available

computer hardware, and still achieve accurate threat recognition.

In addition to the evaluation presented in Section 3.5, the TSA has also tested

prototype Rapiscan 620DV systems with directly integrated trained models. These

results have shown the promise of deep learning methods for automatic threat recog-

nition. Further, they illustrate that the TSA, using X-ray scanners such as the Rapis-

can 620DV, has the capability to bring these new technologies to airport checkpoints

in the near future.

41

Chapter 4

Object Detection as a Positive-Unlabeled

Problem

4.1 Introduction

The performance of supervised deep learning models is often highly dependent on the

quality of the labels they are trained on [ZBB+17, VAC+17, JZL+18]. Recent work

[TSdC+19] has implied the existence of “support vectors” in deep learning datasets:

hard to classify examples that have an especially significant influence on a classifier’s

decision boundary. As such, ensuring that these difficult examples have the correct

label would appear to be important to the final classifier.

Collecting completely accurate labels for object detection [GDDM14, Gir15,

LAE+16, RHGS15, RDGF16, DLHS16, RF17], however, can be challenging, much

more so than it is for classification data. Unlike the latter, where there is a single

label per image, the number of objects in an image is often variable, and objects

can come in a large variety of shapes, sizes, poses, and settings, even within the

same class. Worse, object detection scenes are often crowded, resulting in object

instances that may be occluded. Given the requirement for tight bounding boxes

and the sheer number of instances to label, constituting annotations can be very

time-consuming. For example, just labeling instances, without localization, required

∼30K worker hours for the 328K images of MS COCO [LMB+14], and the airport

checkpoint X-ray dataset used in [LHG+18], which required assembling bags, scan-

ning, and hand labeling, took well over 250 person hours for 4000 scans over the span

of several months. For medical datasets [MAD+12, YWLS17, LGH+17, WPL+17],

42

Figure 4.1: Because of inter- and intra-annotator inconsistencies and the inher-
ent difficulty of instance labeling, the ground truth of object detection datasets can
be incomplete. Example images and their ground truth labels shown for (clock-
wise from top left) PASCAL VOC [EVW+10] (missing people and bottles), MS
COCO [LMB+14] (missing people), DeepLesion [YWLS17] (ground truth is the
dotted line; two boxes on the left indicate two unlabeled nodules), and Visual
Genome [KZG+17] (missing people, tree, clothing, etc.).

this becomes even more problematic, as highly trained (and expensive) radiologist

experts or potentially invasive biopsies are needed to determine ground truth.

As a result of its time-consuming nature, dataset annotations are often crowd-

sourced when possible, either with specialized domain experts or Amazon’s Mechan-

ical Turk, significantly speeding up the data annotation process. In order to en-

sure consistency, dataset designers establish labeling guidelines and/or have multiple

workers label the same image [EVW+10, LMB+14]. Regardless, tough judgment-call

instances, inter- and even intra-worker variability, and human error can still result

43

Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5

Before

After

Figure 4.2: Detections on a PASCAL VOC train set image missing annotations
throughout training: only the sofa in the lower left has a label. Each column shows
detections directly before (top) and after (bottom) the model is trained on the image
shown, for each epoch. While the sofa is consistently detected (purple box) after
being learned, the unlabeled objects (2 monitors, a chair) are repeatedly found and
then suppressed after being trained upon.

in overall inconsistency in labeling, or missing instances entirely. This becomes espe-

cially exacerbated when trying to form a larger dataset, like OpenImages [KRA+18],

which while extremely large, is incompletely labeled.

On the other hand, object detection algorithms often use the standard cross-

entropy loss for object classification. As a result, implicit to this loss function is

the assumption that any region without a bounding box does not contain an object;

in other words, classification is posed as a positive-negative (PN) learning problem.

While such an assumption may be reasonable for an appropriately accurate ground

truth for each image, despite best efforts, this is often not the case in practice due

to the previously outlined difficulties of instance annotation. As shown in Figure 4.1

for a wide array of common datasets, the lack of instance label does not always mean

the absence of a true object.

While the result of this characterization constitutes a noisy label setting, it is

not noisy in the same respect as is commonly considered for classification problems

44

[ZBB+17, VAC+17, JZL+18]. The presence of a positive label in object detection

datasets are generally correct with high probability; it is the lack of a label that should

not be interpreted with confidence as a negative (or background) region. Thus, given

these characteristics common to object detection data, we propose recasting object

detection as a positive-unlabeled (PU) learning problem [Den98, DDGL99, LDG00,

EN08, KNDS17]. With such a perspective, existing labels still implies a positive

sample, but the lack of one no longer enforces that the region must be negative. This

can mitigate the confusing learning signal that often occurs when training on object

detection datasets.

In this work, we explore how the characteristics of object detection annotation

lend themselves to a PU learning problem and demonstrate the efficacy of adapting

detection model training objectives accordingly. We first illustrate with an empirical

study the confusing effect missing labels have on the training process. We then

perform a series of experiments to demonstrate the effectiveness of the PU objective

on two popular, well-labeled object detection datasets (PASCAL VOC [EVW+10] and

MS COCO [LMB+14]) across a range of label missingness, as well as two datasets

with real incomplete labels (Visual Genome [KZG+17], DeepLesion [YWLS17]).

4.2 Example Forgetting in Object Detection

In a recent study of training dynamics of neural network classifiers, the authors of

[TSdC+19] defined a “forgetting event” as a training example switching from being

classified correctly by the model to being classified incorrectly during training. It was

found that certain examples were forgotten more frequently than others while others

were never forgotten (termed “unforgettable”), with the degree of forgetting for in-

dividual examples being consistent across neural network architectures and random

seeds. When visualized, the forgotten examples tend to have atypical or uncommon

45

(a) Labeled objects (b) Unlabeled objects

Figure 4.3: Detection rates of objects before and after training on their correspond-
ing images for (a) labeled instances and (b) instances with labels withheld during
training.

characteristics (e.g., pose, lighting, angle), relative to “unforgettable” examples. In-

terestingly, a significant number of “unforgettable” examples could be removed from

the training set with only a marginal reduction in test accuracy, if the “hard” exam-

ples were kept. This implies that the “hard” examples play a role akin to support

vectors in max-margin learning, while easier “unforgettable” examples have little

effect on the final decision boundary.

Within the context of object detection datasets, we hypothesize that unlabeled

object instances form a similar group of hard examples that are also learned and

then forgotten throughout training. Unlike the inter-batch catastrophic forgetting

in [TSdC+19], however, where hard examples are learned while part of the current

minibatch and then forgotten while learning other examples, unlabeled samples in

object detection are learned from other examples and then suppressed after incurring

misclassification losses during training (see Figure 4.2). Unlabeled instances strongly

resemble positive examples throughout the rest of the dataset and indeed should be

considered as such, but their lack of labels mean that the typical PN classification

objective incentivizes learning them as negatives. Given that hard examples have

a strong influence on classifier boundaries, having unlabeled examples trained as

46

negatives may prove especially detrimental to training.

We perform a similar study as [TSdC+19] and investigate forgetting events on

PASCAL VOC [EVW+10] by tracking detection rates of labeled and unlabeled in-

stances in the training set throughout learning. In particular, an object is considered

detected if the detector produces a bounding box with intersection over union (IoU)

of at least 0.5 and the classifier is at least 80% confident in the correct class. We

track whether or not an object was detected directly before the image it belongs to

is trained upon, and then again after the gradients have been applied. These indi-

cator variables are then combined across objects for each epoch and reported as a

percentage. While PASCAL VOC does naturally have unlabeled instances, we do

not have access to these without a re-labeling effort. As such, we remove 10% of

object annotations during training, but use them to calculate detection rates for this

experiment.

Detection rates for labeled and unlabeled objects over time are shown in Figure

4.3. As is expected, the model learns to detect a higher percentage of labeled instances

over time, and objects are overall more likely to be detected immediately after the

detector trains on them. Despite not having an explicit learning signal, unlabeled

objects are still learned throughout training, but at a lower rate than labeled ones. In

contrast with labeled objects, unlabeled object detections are discouraged with each

PN gradient, leading to a dip in overall detection rates immediately after training.

Despite this, overall detection rates of unlabeled objects grows through the first 5

epochs of training, implying a repeated cycle of learning unlabeled objects from other

intra-class examples, forgetting them when explicitly trained against them, and then

learning them again. Given the undesirability of this forced suppression of detected

objects, we seek a method to remedy this behavior.

47

(a) Positive-Negative, assum-
ing full labels

(b) Positive-Negative, with
missing labels

(c) Positive-Unlabeled, with
missing labels

Figure 4.4: A classifier (green) learns to separate proposals by “objectness”. Models
trained with a standard cross-entropy loss implicitly assume positive-negative (PN)
learning: regions with bounding boxes are considered positive (blue), and any other
proposed boxes are treated as negative (red). This is reasonable when labels are
complete (a), but in reality, object detection datasets are inherently challenging to
label, leading to missing annotations; this forces the classifier to exclude unlabeled
objects from the positive class (b). We propose a positive-unlabeled (PU) approach
(c), which considers non-labeled regions as unlabeled (yellow) rather than negative,
allowing non-positive regions to be classified as positive. Best viewed in color.

4.3 Methods

4.3.1 Faster R-CNN

In principle, the observed problem is characteristic of the data and is thus general to

any object detection framework. However, in this work, we primarily focus on Faster

R-CNN [RHGS15], a popular 2-stage method for which we provide a quick overview

here.

As with other object detection models, given an input image X, the desired output

of Faster R-CNN is a bounding box B(i) ∈ R4 and class probabilities c(i) ∈ Rk for

each object (indexed by i) present, where k is the number of classes and the final

classification decision is commonly argmax c(i). Faster R-CNN does this in a 2-stage

process. First, a convolutional neural network (CNN) [LBD+89] is used to produce

image features h. A Region Proposal Network (RPN) then generates bounding box

proposals B̂(i) relative to a set of reference boxes spatially tiled over h. At the same

48

time, the RPN predicts an “objectness” probability ĉ(i) for each proposal, learned as

an object-or-not binary classifier. The second stage then takes the proposals with

the highest scores, and predicts bounding box refinements to produce B(i) and the

final classification probabilities c(i).

Of particular interest is how the classifier producing ĉ(i) is trained. Specifically,

the cross-entropy loss H(t, y) is employed, where H(t, y) signifies the loss incurred

when the model outputs t when the ground truth is y. In the RPN, this results in

the following classification risk minimization:

RRPN
pn = πpE[H(ĉp,+1)] + πnE[H(ĉn,−1)] (4.1)

where πp and πn are the class probability priors for the positive and negative classes,

respectively, and ĉ
(i)
p and ĉ

(i)
n are the predicted “objectness” probabilities for ground

truth positive and negative regions. This risk is estimated with samples as:

LRPNpn =
π̂p
Np

Np∑
i=1

H(ĉ(i)
p ,+1) +

π̂n
Nn

Nn∑
i=1

H(ĉ(i)
n ,−1) (4.2)

where Np and Nn are the number of ground truth positive and negative regions being

considered, respectively, and the class priors are typically estimated as π̂p = Np

Np+Nn

and π̂m = Nn

Np+Nn
. Notably, this training loss treats all non-positive regions in an

image as negative.

4.3.2 PU Learning

In a typical binary classification problem, input dataX ∈ Rd are labeled as Y ∈ {±1},

resulting in what is commonly termed a positive-negative (PN) problem. This im-

plicitly assumes having samples from both the positive (P) and negative (N) distribu-

tions, and that these samples are labeled correctly (Figure 4.4a). However, in some

instances, we only know the labels of the positive samples. The remainder of our

49

data are unlabeled (U): samples that could be positive or negative. Such a situation

is commonly called a positive-unlabeled (PU) setting, where the N distribution is re-

placed by an unlabeled (U) distribution (Figure 4.4c). Such a representation admits

a classifier that can appropriately include unlabeled positive regions on the correct

side of the decision boundary. We briefly review PN and PU risk estimation here.

Let p(x, y) be the underlying joint distribution of (X, Y), pp(x) = p(x|Y = +1)

and pn(x) = p(x|Y = −1) be the distributions of P and N data, p(x) be the dis-

tribution of U data, πp = p(Y = +1) be the positive class-prior probability, and

πn = p(Y = −1) = 1 − πp be the negative class-prior probability. In a PN set-

ting, data are sampled from pp(x) and pn(x) such that Xp = {xpi }
Np

i=1 ∼ pp(x) and

Xn = {xni }Nn
i=1 ∼ pn(x). Let g be an arbitrary decision function that represents a

model. The risk of g can be estimated from Xp and Xn as:

R̂pn(g) = πpR̂
+
p (g) + πnR̂

−
n (g) (4.3)

R̂+
p (g) = 1/Np

∑Np

i=1 `(g(xpi),+1) and R̂−n (g) = 1/Nn

∑Nn

i=1 `(g(xni),−1), where ` is the

loss function. In classification, ` is commonly the cross-entropy loss H(t, y).

In PU learning, Xn is unavailable; instead we have unlabeled data Xu = {xui }Nu
i=1 ∼

p(x), where Nu is the number of unlabeled samples. However, the negative class

empirical risk R̂−n (g) in Equation 4.3 can be approximated indirectly [DNS15, DNS14].

Denoting R−p (g) = Ep[`(g(X),−1)] and R−u (g) = EX∼p(x)[`(g(X),−1)], and observing

πnpn(x) = p(x) − πppp(x), we can replace the missing term πnR
−
n (g) = R−u (g) −

πpR
−
p (g). Hence, we express the overall risk without explicit negative data as

R̂pu(g) = πpR̂
+
p (g) + R̂−u (g)− πpR̂−p (g) (4.4)

where R̂−p (g) = 1/Np

∑Np

i=1 `(g(xpi),−1) and R̂−u (g) = 1/Nu

∑Nu

i=1 `(g(xui),−1).

However, a flexible enough model can overfit the data, leading to the empirical

50

risk in Equation 4.4 becoming negative. Given that most modern object detectors

utilize neural networks, this type of overfitting can pose a significant problem. In

[KNDS17], the authors propose a non-negative PU risk estimator to combat this:

R̂pu(g) = πpR̂
+
p (g) + max{0, R̂−u (g)− πpR̂−p (g)} (4.5)

We choose to employ this non-negative PU risk estimator for the rest of this work.

4.3.3 PU Learning for Object Detection

PU Object Proposals

In object detection datasets, the ground truth labels represent positive samples. Any

regions that do not share sufficient overlap with a ground truth bounding box are

typically considered as negative background, but the accuracy of this assumption

depends on every object within a training image being labeled, which may not be

the case (Figure 4.1). As shown in Figure 4.4b, this results in the possibility of

positive regions being proposed that are labeled negative during training, due to a

missing ground truth label. Therefore, we posit that object detection more naturally

resembles a PU learning problem than PN.

We recognize that two-stage detection naturally contains a binary classification

problem in the first stage. In Faster R-CNN specifically, the RPN comprising the first

stage assigns an “objectness” score, which is learned with a binary cross-entropy loss

(Equation 4.2). As previously noted, the PN nature of this loss can be problematic,

so we propose replacing it with a PU formulation. Combining Equations 4.2 and 4.5,

we produce the following loss function:

LRPNpu =
πp
Np

Np∑
i=1

H(ĉ(i)
p ,+1) + max

{
0,

1

Nu

Nu∑
i=1

H(ĉ(i)
u ,−1)− πp

Np

Np∑
i=1

H(ĉ(i)
p ,−1)

}
(4.6)

51

Figure 4.5: Faster R-CNN [RHGS15] Region Proposal Network (RPN) with the
proposed positive-unlabeled cross-entropy loss. The estimate of the positive class
prior π̂p is updated with the objectness predictions ĉ, with momentum γ.

(a) ρ = 0.4 (b) ρ = 0.5 (c) ρ = 0.6

Figure 4.6: Positive class prior π̂p estimated during training of Faster R-CNN on
PASCAL VOC versus from hand-tuning πp as a hyperparameter, for instance label
missingness proportion ρ = {0.4, 0.5, 0.6}.

Such a loss function relaxes the penalty of positive predictions for unlabeled objects.

Estimating πp

The PU cross-entropy loss in Equation 4.6 assumes the class-prior probability of the

positive class πp is known. In practice, this is not usually the case, so πp must be

estimated, denoted as π̂p. For object detection, estimating πp is especially problematic

because πp is not static: as the RPN is trained, an increasing proportion of region

proposals will (hopefully) be positive. While [KNDS17] showed some robustness to πp

52

misspecification, this was only on a fairly narrow range of πp ∈ [0.8πp, 1.2πp]. During

object detection performance, πp starts from virtually 0 and grows steadily as the

RPN improves. As such, any single estimate π̂p poses the risk of being significantly

off the mark during a large portion of training.

To address this, we recognize that the RPN of Faster R-CNN is already designed

to infer the positive regions of an image, so we count the number of positive regions

produced by the RPN and use it as an estimator for πp:

π̂p =
NRPN
p

NRPN
(4.7)

where NRPN is the total number of RPN proposals that are sampled for training, and

NRPN
p being those with classifier confidence of at least 0.5. Note that this estimation

of πp comes essentially for free. Given that Faster R-CNN is trained one image at a

time and the prevalence of objects varies between images, we maintain an exponential

moving average with momentum γ in order to stabilize π̂p (see Figure 4.5). This

estimate π̂p is then used in the calculation of the loss LRPNpu and its gradients.

4.4 Related work

Like many machine learning problems, the formulation of most object detection

frameworks are designed fully supervised [GDDM14, Gir15, LAE+16, RHGS15,

RDGF16, DLHS16, RF17]: it is assumed that there exists a dataset of images where

every object is labeled and such a dataset is available to train the model. However, as

discussed above, collecting such a dataset can be expensive. Because of this, methods

that can learn from partially labeled datasets have been a topic of interest for object

detection. What “partially labeled” constitutes can vary, and many types of label

missingness have been considered.

53

Weakly supervised object detection models [BV16, OBLS15, RW15] assume a

dataset with image level labels, but not any instance labels. These models are some-

what surprisingly competent at identifying approximate locations of objects in an

image without any object specific cues, but have a harder time with providing pre-

cise localization. This is especially the case when there are many of the same class of

object in close proximity to each other, as individual activations can blur together,

and the lack of bounding boxes makes it difficult to learn precise boundaries.

Other approaches consider settings where bounding boxes are available for some

classes (e.g., PASCAL VOC’s 20 classes) but not others (e.g., ImageNet [DDS+09]

classes). LSDA [HGT+14] does this by modifying the final layer of a CNN [KSH12] to

recognize classes from both categories, and [TWG+16] improves upon LSDA by taking

advantage of visual and semantic similarities between classes. OMNIA [RGBYO18]

proposes a method merging datasets that are each fully annotated for their own set

of classes, but not each other’s.

There are also approaches that consider a single dataset, but the labels are un-

dercomplete across all classes. This setting most resembles what we consider in our

paper. In [DZM+18], only 3-4 annotated examples per class are assumed given to

start; additional pseudo-labels are generated from the model on progressively more

difficult examples as the model improves. Soft-sampling has also been proposed to

re-weight gradients of background regions that either have overlap with positive re-

gions or produce high detection scores in a separately trained detector [WBS+19];

experiments were done on PASCAL VOC with a percentage of annotations discarded

and on a subset of OpenImages [KRA+18].

54

(a) PASCAL VOC (b) MS COCO

Figure 4.7: mAP at IoU 0.5 (AP50) on (a) PASCAL VOC and (b) MS COCO, for
a range of label missingness ρ.

4.5 Experiments

4.5.1 Hand-tuning Versus Estimation of πp

As discussed in Section 4.3.3, PU risk estimation requires the prior πp. We experiment

with two ways of determining πp. In the first method (Hand-Tuned), we treat πp as

a constant hyperparameter and tune it by hand. In the second (Estimated), we infer

πp from our network as described in Equation 4.7, setting momentum γ to 0.9. We

compare the estimate π̂p inferred automatically with the hand-tuned πp that yielded

the highest mAP on PASCAL VOC. To see how our estimate changes in response

to label missingness, when assembling our training set, we remove each annotation

from an image with probability ρ, giving us a dataset with 1 − ρ proportion of the

total labels, and then do our comparison for ρ = {0.4, 0.5, 0.6} in Figure 4.6.

In all tested settings of ρ, the estimation π̂p increases over time before stabilizing.

Such a result matches expectations, as when an object detection model is first ini-

tialized, its parameters have yet to learn good values, and thus the true proportion

of positive regions πp is likely to be quite low. As the model trains, its ability to

generate accurate regions improves, resulting in a higher proportion of regions being

55

positive. This in turn results in a higher true value of πp, which our estimate π̂p

follows. As the model converges, πp (and π̂p) stabilizes towards the true prevalence

of objects in the dataset relative to background regions. Interestingly, the final value

of π̂p settles close to the value of πp found by treating the positive class prior as a

static hyperparameter, but consistently above it. We hypothesize that this is due to

a single static value having to hedge against the early stages of training, when πp is

lower.

We use our proposed method of auto-inferring πp for the rest of our experiments,

with γ = 0.9, rather than hand-tuning it as a hyperparameter.

4.5.2 PU Versus PN on PASCAL VOC and MS COCO

We investigate the effect that incomplete labels have on object detection training

for the popular datasets PASCAL VOC [EVW+10] and MS COCO [LMB+14], using

Faster R-CNN [RHGS15] with a ResNet101 [HZRS16] convolutional feature extractor.

In order to quantify the effect of missing labels, we artificially discard a proportion ρ

of the annotations. We compare three settings, each for a range of values of ρ. Given

that the annotations are the source of the learning signal, we keep the number of

total instances constant between settings for each ρ as follows:

• PN : We remove a proportion of labels from every image in the dataset, such

that the total proportion of removed labels is equal to ρ, and all images are

included in the training set. We then train the detection model with a PN

objective, as is normal.

• Full-PN : We discard a proportion ρ of entire images and their labels, resulting

in a dataset of fewer images, but each of which retains its complete annotations.

• PU : We use the same images and labels as in PN, but instead train with our

56

Table 4.1: Detector performance on Visual Genome, with full labels, at various IoU
thresholds.

AP25 AP50 AP75

Weighted? Y N Y N Y N

PN 12.09 22.79 9.11 17.35 2.46 9.98
PU 13.83 25.56 10.44 19.89 4.52 11.79

proposed PU objective.

A comparison of mean average precision (mAP) performance at IoU 0.5 for these

3 settings on PASCAL VOC and MS COCO is shown in Figure 4.7. As expected,

as ρ is increased, the detector’s performance degrades. Focusing on the results for

PN and Full-PN, it is clear that for an equal number of annotated objects, having

fewer images that are more thoroughly annotated is preferable to a larger number of

images with less thorough labels. On the other hand, considering object detection

as a PU (PU) problem as we have proposed allows us to improve detector quality

across a wide range of label missingness. While having a more carefully annotated

set (Full-PN) is still superior, the PU objective helps close the gap. Interestingly,

there is a small gain (PASCAL VOC: +0.2, MS COCO: +0.3) in mAP at full labels

(ρ = 0), possibly due to better learning of objects missing labels in the full dataset.

4.5.3 Visual Genome

Visual Genome [KZG+17] is a scene understanding dataset of objects, attributes,

and relationships. While not as commonly used as an object detection benchmark

as PASCAL VOC or MS COCO, Visual Genome is popular when relationships or

attributes of objects are desired, as when Faster R-CNN is used as a pre-trained

feature extractor for Visual Question Answering [ALA+15, AHB+18]. Given the

large number of classes (33,877) and the focus on scene understanding during the

57

(a) (b)

Figure 4.8: Lesion sensitivity versus (a) false positive rate and (b) IoU threshold for
different false positive (FP) allowances per image. We compare the baseline Faster
R-CNN variant in [YWLS17] trained with a PN objective versus the proposed PU
objective.

annotation process, the label coverage of all object instances present in each image

is correspondingly lower than PASCAL VOC or MS COCO. In order to achieve its

scale, the labeling effort was crowd-sourced to a large number of human annotators.

As pointed out in [EVW+10], even increasing from 10 classes of objects in PASCAL

VOC2006 to the 20 in VOC2007 resulted in a substantially larger number of labeling

errors, as it became more difficult for human annotators to remember all of the object

classes. This problem is worse by several orders of magnitude for Visual Genome.

While the dataset creators implemented certain measures to ensure quality, there

still are many examples of missing labels. In such a setting, the proposed PU risk

estimation is especially appropriate, even with all included labels.

We train ResNet101 Faster R-CNN using both PN and the proposed PU risk

estimation on 1600 of the top object classes of Visual Genome, as in [AHB+18].

We evaluate performance on the classes present in the test set and report mAP at

various IoU thresholds {0.25, 0.50, 0.75} in Table ??. We also show mAP results

when each class’s average precision is weighted according to class frequency, as done

in [AHB+18]. The PASCAL VOC and MS COCO results in Figure 4.7 indicate that

58

we might expect increasing benefit from utilizing a PU loss as missing labels become

especially prevalent, and for Visual Genome, where this is indeed the case, we observe

that PU risk estimation outperforms PN by a significant margin, across all settings.

4.5.4 DeepLesion

The recent progress in computer vision has attracted increasing attention towards po-

tential health applications. To encourage deep learning research in this direction, the

National Institutes of Health (NIH) Clinical Center released DeepLesion [YWLS17],

a dataset consisting of 32K CT scans with annotated lesions. Unlike PASCAL VOC,

MS COCO, or Visual Genome, labeling cannot be crowd-sourced for most medical

datasets, as accurate labeling requires medical expertise. Even with medical experts,

labeling can be inconsistent; lesion detection is a challenging task, with biopsy often

necessary to get an accurate result. Like other datasets labeled by an ensemble of

annotators, the ground truth of medical datasets may contain inconsistencies, with

some doctors being more conservative or aggressive in their diagnoses. Due to these

considerations, a PU approach more accurately characterizes the nature of the data.

We re-implemented the modified version of Faster R-CNN described in [YWLS17]

as the baseline model and compare against our proposed model using the PU objec-

tive, making no other changes. We split the dataset into 70%-15%-15% parts for

training, validation, and test. Following [YWLS17], we report results in terms of free

receiver operating characteristic (FROC) and sensitivity of lesion detection versus

intersection-over-union (IoU) threshold for a range of allowed false positives (FP)

per image (Figure 4.8). In both cases, we show that switching from a PN objective

to a PU one results in gains in performance.

59

4.6 Conclusions and Future Work

Having observed that object detection data more closely resembles a positive-

unlabeled (PU) problem, we propose training object detection models with a PU

objective. Such an objective requires estimation of the class probability of the pos-

itive class, but we demonstrate how this can be estimated dynamically with little

modification to the existing architecture. Making these changes allows us to achieve

improved detection performance across a diverse set of datasets, some of which are

real datasets with significant labeling difficulties. While we primarily focused our

attention on object detection, a number of other popular tasks share similar charac-

teristics and could also benefit from being recast as PU learning problems (e.g., seg-

mentation [RFB15, LSD15, HGDG17], action detection [SZS12, IZJ+17, GSR+18]).

In our current implementation, we primarily focus on applying the PU objective

to the binary object-or-not classifier in Faster R-CNN’s Region Proposal Network.

A natural extension of this work would be to apply the same objective to the second

stage classifier, which must also separate objects from background. However, as the

second stage classifier outputs one of several classes (or background), the classification

is no longer binary, and requires estimating multiple class priors {πc}kc=1 [XXXT17],

which we leave to future work. Such a multi-class PU loss would also allow extension

to single-stage detectors like SSD [LAE+16] and YOLO [RDGF16, RF17]. Given the

performance gains already observed, we believe this to be an effective and natural

improvement to the object detection classification loss.

60

Chapter 5

Generative Adversarial Network Training

is a Continual Learning Problem

5.1 Introduction

Generative Adversarial Networks [GPAM+14] (GANs) are a popular framework for

modeling draws from complex distributions, demonstrating success in a wide variety

of settings, for example image synthesis [RMC16, KALL18] and language model-

ing [LMS+17]. In the GAN setup, two agents, the discriminator and the generator

(each usually a neural network), are pitted against each other. The generator learns

a mapping from an easy-to-sample latent space to a distribution in the data space,

which ideally matches the real data’s distribution. At the same time, the discrim-

inator aims to distinguish the generator’s synthesized samples from the real data

samples. When trained successfully, GANs yield impressive results; in the image do-

main for example, synthesized images from GAN models are significantly sharper and

more realistic than those of other classes of models [LSLW16]. On the other hand,

GAN training can be notoriously finicky. One particularly well-known and common

failure mode is mode collapse [CLJ+17, SVR+17]: instead of producing samples suf-

ficiently representing the true data distribution, the generator maps the entire latent

space to a limited subset of the real data space.

When mode collapse occurs, the generator does not “converge,” in the conven-

tional sense, to a stationary distribution. Rather, because the discriminator can

easily learn to recognize a mode-collapsed set of samples and the generator is opti-

mized to avoid the discriminator’s detection, the two end up playing a never-ending

61

(a) Iteration 11960 (b) Iteration 12000 (c) Iteration 12160 (d) Iteration 12380

Figure 5.1: Real samples from a mixture of eight Gaussians in red; generated sam-
ples in blue. (a) The generator is mode-collapsed in the bottom right. (b) The
discriminator learns to recognize the generator oversampling this region and pushes
the generator away, so the generator gravitates toward a new mode. (c) The dis-
criminator continues to chase the generator, causing the generator to move in a
clockwise direction. (d) The generator eventually returns to the same mode as (a).
Such oscillations are common while training a vanilla GAN. Best seen as a video:
https://youtu.be/91a2gPWngo8.

game of cat and mouse: the generator meanders towards regions in the data space the

discriminator thinks are real (likely near where the real data lie) while the discrimi-

nator chases after it. Interestingly though, if generated samples are plotted through

time (as in Figure 5.1), it appears that the generator can revisit previously collapsed

modes. At first, this may seem odd. The discriminator was ostensibly trained to

recognize that mode in a previous iteration and did so well enough to push the gener-

ator away from generating those samples. Why has the discriminator seemingly lost

this ability?

We conjecture that this oscillation phenomenon is enabled by catastrophic forget-

ting [MC89, Rat90]: neural networks have a well-known tendency to forget how to

complete old tasks while learning new ones. In most GAN models, the discriminator

is a binary classifier, with the two classes being the real data and the generator’s

outputs. Implicit to the training of a standard classifier is the assumption that the

data are drawn independently and identically distributed (i.i.d.). Importantly, this

assumption does not hold true in GANs: the distribution of the generator class (and

thus the discriminator’s training data) evolves over time. Moreover, these changes in

62

the generator’s distribution are adversarial, designed specifically to deteriorate dis-

criminator performance on the fake class as much as possible. Thus, the alternating

training procedure of GANs in actuality corresponds to the discriminator learning

tasks sequentially, where each task corresponds to recognizing samples from the gen-

erator at that particular point in time. Without any measures to prevent catastrophic

forgetting, the discriminator’s ability to recognize fake samples from previous itera-

tions will be clobbered by subsequent gradient updates, allowing a mode-collapsed

generator to revisit old modes if training runs long enough. Given this tendency, a

collapsed generator can wander indefinitely without ever learning the true distribu-

tion.

With this perspective in mind, we cast training the GAN discriminator as a con-

tinual learning problem, leading to two main contributions. (i) While developing

systems that learn tasks in a sequential manner without suffering from catastrophic

forgetting has become a popular direction of research, current benchmarks have re-

cently come under scrutiny as being unrepresentative to the fundamental challenges

of continual learning [FG18]. We argue that GAN training is a more realistic set-

ting, and one that current methods tend to fail on. (ii) Such a reframing of the

GAN problem allows us to leverage relevant methods to better match the dynam-

ics of training the min-max objective. In particular, we build upon the recently

proposed elastic weight consolidation [KPR+17] and intelligent synapses [ZPG17].

By preserving the discriminator’s ability to identify previous generator samples, this

memory prevents the generator from simply revisiting past distributions. Adapting

the GAN training procedure to account for catastrophic forgetting provides an im-

provement in GAN performance for little computational cost and without the need to

train additional networks. Experiments on CelebA and CIFAR10 image generation

and COCO Captions text generation show discriminator continual learning leads to

63

better generations.

5.2 Catastrophic Forgetting in GANs

Consider distribution preal(x), from which we have data samples Dreal. Seeking a

mechanism to draw samples from this distribution, we learn a mapping from an

easy-to-sample latent distribution p(z) to a data distribution pgen(x), which we want

to match preal(x). This mapping is parameterized as a neural network Gφ(z) with

parameters φ, termed the generator. The synthesized data are drawn x = Gφ(z),

with z ∼ p(z). The form of pgen(x) is not explicitly assumed or learned; rather, we

learn to draw samples from pgen(x).

To provide feedback to Gφ(z), we simultaneously learn a binary classifier that

aims to distinguish synthesized samples Dgen drawn from pgen(x) from the true sam-

ples Dreal. We also parameterize this classifier as a neural network Dθ(x) ∈ [0, 1] with

parameters θ, with Dθ(x) termed the discriminator. By incentivizing the generator

to fool the discriminator into thinking its generations are actually from the true data,

we hope to learn Gφ(z) such that pgen(x) approaches preal(x).

These two opposing goals for the generator and discriminator are usually formu-

lated as the following min-max objective:

min
φ

max
θ
LGAN(θ,φ) = Ex∼preal(x)[logDθ(x)] + Ez∼p(z)[log(1−Dθ(Gφ(z)))] (5.1)

At each iteration t, we sample from pgen(x), yielding generated data Dgen
t . These

generated samples, along with samples from Dreal, are then passed to the discrimi-

nator. A gradient descent optimizer nudges θ so that the discriminator takes a step

towards maximizing LGAN(θ,φ). Parameters φ are updated similarly, but to min-

imize LGAN(θ,φ). These updates to θ and φ take place in an alternating fashion.

64

The expectations are approximated using samples from the respective distributions,

and therefore learning only requires observed samples Dreal and samples from pgen(x).

The updates to Gφ(z) mean that pgen(x) changes as a function of t, per-

haps substantially. Consequently, samples {Dgen
1 , ...,Dgen

t } come from a sequence

of different distributions. At iteration t, only samples from Dgen
t are available, as

Gφ(z) has changed, and saving previous instantiations of the generator or samples

{Dgen
1 , ...,Dgen

t−1} can be prohibitive. Thus, Dθ(x) is typically only provided Dgen
t ,

so it only learns the most recent distribution, with complete disregard for previous

pgen(x). Because of the catastrophic forgetting effect of neural networks, the ability

of Dθ(x) to recognize these previous distributions is eventually lost in the pursuit of

maximizing LGAN(θ,φ) with respect to only Dgen
t . This opens the possibility that the

generator goes back to generating samples the discriminator had previously learned

(and then forgot) to recognize, leading to unstable mode-collapsed oscillations that

hamper GAN training (as in Figure 5.1). Recognizing this problem, we propose that

the discriminator should be trained with the temporal component of pgen(x) in mind.

5.3 Method

5.3.1 Classic Continual Learning

Catastrophic forgetting has long been known to be a problem with neural networks

trained on a series of tasks [MC89, Rat90]. While there are many approaches to

addressing catastrophic forgetting, here we primarily focus on elastic weight con-

solidation (EWC) and intelligent synapses (IS). These are meant to illustrate the

potential of catastrophic forgetting mitigation to improve GAN learning, with the

expectation that this opens up the possibility of other such methods to significantly

improve GAN training, at low additional computational cost.

65

Elastic Weight Consolidation (EWC)

To derive the EWC loss, [KPR+17] frames training a model as finding the most

probable values of the parameters θ given the data D. For two tasks, the data are

assumed partitioned into independent sets according to the task, and the posterior for

Task 1 is approximated as a Gaussian with mean centered on the optimal parameters

for Task 1 θ∗1 and diagonal precision given by the diagonal of the Fisher information

matrix F1 at θ∗1. This gives the EWC loss the following form:

L(θ) = L2(θ) + LEWC(θ), with LEWC(θ) ,
λ

2

∑
i

F1,i(θi − θ∗1,i)2 , (5.2)

where L2(θ) = log p(D2|θ) is the loss for Task 2 individually, λ is a hyperparameter

representing the importance of Task 1 relative to Task 2, F1,i =
(∂L1(θ)

∂θi

∣∣
θ=θ∗1

)2, i is

the parameter index, and L(θ) is the new loss to optimize while learning Task 2.

Intuitively, the EWC loss prevents the model from straying too far away from the

parameters important for Task 1 while leaving less crucial parameters free to model

Task 2. Subsequent tasks result in additional LEWC(θ) terms added to the loss for

each previous task. By protecting the parameters deemed important for prior tasks,

EWC as a regularization term allows a single neural network (assuming sufficient pa-

rameters and capacity) to learn new tasks in a sequential fashion, without forgetting

how to perform previous tasks.

Intelligent Synapses (IS)

While EWC makes a point estimate of how essential each parameter is at the con-

clusion of a task, IS [ZPG17] protects the parameters according to their importance

along the task’s entire training trajectory. Termed synapses, each parameter θi of the

neural network is awarded an importance measure ω1,i based on how much it reduced

the loss while learning Task 1. Given a loss gradient g(t) = ∇θL(θ)|θ=θt at time t,

66

the total change in loss during the training of Task 1 then is the sum of differential

changes in loss over the training trajectory. With the assumption that parameters θ

are independent, we have:

∫ t1

t0
g(t)dθ =

∫ t1

t0
g(t)θ′dt =

∑
i

∫ t1

t0
gi(t)θ

′
idt , −

∑
i

ω1,i , (5.3)

where θ′ = dθ
dt

and (t0, t1) are the start and finish of Task 1, respectively. Note the

added negative sign, as importance is associated with parameters that decrease the

loss.

The importance measure ω1,i can now be used to introduce a regularization term

that protects parameters important for Task 1 from large parameter updates, just as

the Fisher information matrix diagonal terms F1,i were used in EWC. This results in

an IS loss very reminiscent in form1:

L(θ) = L2(θ) + LIS(θ), with LIS(θ) ,
λ

2

∑
i

ω1,i(θi − θ∗1,i)2 . (5.4)

5.3.2 GAN Continual Learning

The traditional continual learning methods are designed for certain canonical bench-

marks, commonly consisting of a small number of clearly defined tasks (e.g., clas-

sification datasets in sequence). In GANs, the discriminator is trained on dataset

Dt = {Dreal,Dgen
t } at each iteration t. However, because of the evolution of the

generator, the distribution pgen(x) from which Dgen
t comes changes over time. This

violates the i.i.d. assumption of the order in which we present the discriminator data.

As such, we argue that different instances in time of the generator should be viewed

1[ZPG17] instead consider Ω1,i =
ω1,i

(∆1,i)2+ξ , where ∆1,i = θ1,i − θ0,i and ξ is a small number

for numerical stability. We however found that the inclusion of (∆1,i)
2 can lead to the loss

exploding and then collapsing as the number of tasks increases and so omit it. We also change
the hyperparameter c into λ

2 .

67

as separate tasks. Specifically, in the parlance of continual learning, the training data

are to be regarded as D = {(Dreal,Dgen
1), (Dreal,Dgen

2), ...}. Thus motivated, we would

like to apply continual learning methods to the discriminator, but doing so is not

straightforward for the following reasons:

• Definition of a task: EWC and IS were originally proposed for discrete,

well-defined tasks. For example, [KPR+17] applied EWC to a DQN [MKS+15]

learning to play ten Atari games sequentially, with each game being a clear,

independent task. For GAN, there is no such precise definition as to what con-

stitutes a “task,” and as discriminators are not typically trained to convergence

at every iteration, it is also unclear how long a task should be.

• Computational memory: While Equations 5.2 and 5.4 are for two tasks,

they can be extended to K tasks by adding a term LEWC or LIS for each of the

K − 1 prior tasks. As each term LEWC or LIS requires saving both a historical

reference term θ∗k and either Fk or ωk (all of which are the same size as the

model parameters θ) for each task k, employing these techniques naively quickly

becomes impractical for bigger models when K gets large, especially if K is set

to the number of training iterations T .

• Continual not learning: Early iterations of the discriminator are likely to

be non-optimal, and without a forgetting mechanism, EWC and IS may forever

lock the discriminator to a poor initialization. Additionally, the unconstrained

addition of a large number of terms LEWC or LIS will cause the continual learning

regularization term to grow unbounded, which can disincentivize any further

changes in θ.

To address these issues, we build upon the aforementioned continual learning

techniques, and propose several changes.

68

Number of tasks as a rate: We choose the total number of tasks K as a

function of a constant rate α, which denotes the number of iterations before the

conclusion of a task, as opposed to arbitrarily dividing the GAN training iterations

into some set number of segments. Given T training iterations, this means a rate α

yields K = T
α

tasks.

Online Memory: Seeking a way to avoid storing extra θ∗k, Fk, or ωk, we observe

that the sum of two or more quadratic forms is another quadratic, which gives the

classifier loss with continual learning the following form for the (k + 1)th task:

L(θ) = Lk+1(θ) + LCL(θ), with LCL(θ) ,
λ

2

∑
i

Sk,i(θi − θ̄∗k,i)2 , (5.5)

where θ̄∗k,i =
Pk,i

Sk,i
, Sk,i =

∑k
κ=1Qκ,i, Pk,i =

∑k
κ=1Qκ,iθ

∗
κ,i, and Qκ,i is either Fκ,i or

ωκ,i, depending on the method. We name models with EWC and IS augmentations

EWC-GAN and IS-GAN, respectively.

Controlled forgetting: To provide a mechanism for forgetting earlier non-

optimal versions of the discriminator and to keep LCL bounded, we add a discount

factor γ: Sk,i =
∑k

κ=1 γ
k−κQκ,i and Pk,i =

∑k
κ=1 γ

k−κQκ,iθ
∗
κ,i. Together, α and γ

determine how far into the past the discriminator remembers previous generator dis-

tributions, and λ controls how important memory is relative to the discriminator loss.

Note, the terms Sk and Pk can be updated every α steps in an online fashion:

Sk,i = γSk−1,i +Qk,i, Pk,i = γPk−1,i +Qk,iθ
∗
k,i (5.6)

This allows the EWC or IS loss to be applied without necessitating storing either Qk

or θ∗k for every task k, which would quickly become too costly to be practical. Only

a single variable to store a running average is required for each of Sk and Pk, making

this method space efficient.

Augmenting the discriminator with the continual learning loss, the GAN objective

69

becomes:

min
φ

max
θ
LCL(θ,φ) = LGAN(θ,φ)− LCL(θ) (5.7)

Note that the training of the generator remains the same; full algorithms are in

Appendix A. Here we have shown two methods to mitigate catastrophic forgetting

for the original GAN; however, the proposed framework is applicable to almost all of

the wide range of GAN setups.

5.4 Related Work

Continual Learning in GANs There has been previous work investigating con-

tinual learning within the context of GANs. Improved GAN [SGZ+16] introduced his-

torical averaging, which regularizes the model with a running average of parameters

of the most recent iterations. Simulated+Unsupervised training [SPT+17] proposed

replacing half of each minibatch with previous generator samples during training of

the discriminator, as a generated sample at any point in time should always be con-

sidered fake. However, such an approach necessitates a historical buffer of samples

and halves the number of current samples that can be considered. Continual Learn-

ing GAN [SBSL18] applied EWC to GAN, as we have, but used it in the context

of the class-conditioned generator that learns classes sequentially, as opposed to all

at once, as we propose. [TTTV18] independently reached a similar conclusion on

catastrophic forgetting in GANs, but focused on gradient penalties and momentum

on toy problems.

Multiple network GANs The heart of continual learning is distilling a network’s

knowledge through time into a single network, a temporal version of the ensemble

described in [HVD15]. There have been several proposed models utilizing multi-

ple generators [HNLP18, GKN+18] or multiple discriminators [DGM17, NBC17],

70

while Bayesian GAN [SW17] considered distributions on the parameters of both

networks, but these all do not consider time as the source of the ensemble. Un-

rolled GAN [MPPSD17] considered multiple discriminators “unrolled” through time,

which is similar to our method, as the continual learning losses also utilize historical

instances of discriminators. However, both EWC-GAN and IS-GAN preserve the

important parameters for prior discriminator performance, as opposed to requiring

backpropagation of generator samples through multiple networks, making them easier

to implement and train.

GAN convergence While GAN convergence is not the focus of this paper, con-

vergence does similarly avoid mode collapse, and there are a number of works on the

topic [HRU+17, UNS+18, NK17, MNG17]. From the perspective of [HRU+17], EWC

or IS regularization in GAN can be viewed as achieving convergence by slowing the

discriminator, but per parameter, as opposed to a slower global learning rate.

5.5 Experiments

5.5.1 Discriminator Catastrophic Forgetting

While Figure 5.1 implies catastrophic forgetting in a GAN discriminator, we can show

this concretely. To do so, we first train a DCGAN [RMC16] on the MNIST dataset.

Since the generator is capable of generating an arbitrary number of samples at any

point, we can randomly draw 70000 samples to comprise a new, “fake MNIST” dataset

at any time. By doing this at regular intervals, we create datasets {Dgen
1 , ...,Dgen

T }

from pgen(x) at times 1, ..., T . Samples are shown in Appendix B.

Having previously generated a series of datasets during the training of a DC-

GAN, we now reinitialize the discriminator and train to convergence on each Dgen
t

in sequence. Importantly, we do not include samples from Dgen
<t while fine-tuning on

71

Figure 5.2: Each line represents the discriminator’s test accuracy on the fake GAN
datasets. Note the sharp decrease in the discriminator’s ability to recognize previous
fake samples upon fine-tuning on the next dataset using SGD (left). Forgetting still
occurs with EWC (right), but is less severe.

Dgen
t . After fine-tuning on the train split of dataset Dgen

t , the percentage of gener-

ated examples correctly identified as fake by the discriminator is evaluated on the

test splits of Dgen
≤t , with and without EWC (Figure 5.2). The catastrophic forgetting

effect of the discriminator trained with SGD is clear, with a steep drop-off in dis-

criminating ability on Dgen
t−1 after fine-tuning on Dgen

t ; this is unsurprising, as pgen(x)

has evolved specifically to deteriorate discriminator performance. While there is still

a dropoff with EWC, forgetting is less severe.

While the training outlined above is not what is typical for GAN, we choose this

set-up as it closely mirrors the continual learning literature. With recent criticisms

of some common continual learning benchmarks as either being too easy or missing

the point of continual learning [FG18], we propose GAN as a new benchmark pro-

viding a more realistic setting. From Figure 5.2, it is clear that while EWC certainly

helps, there is still much room to improve with new continual learning methods.

However, the merits of GAN as a continual learning benchmark go beyond difficulty.

While it is unclear why one would ever use a single model to classify successive ran-

dom permutations of MNIST [GMX+13], many real-world settings exist where the

data distribution is slowly evolving. For such models, we would like to be able to

update the deployed model without forgetting previously learned performance, es-

72

pecially when data collection is expensive and thus done in bulk sometime before

deployment. For example, autonomous vehicles [HWT+15] will eventually encounter

unseen car models or obstacles, and automated screening systems at airport check-

points [LHG+18] will have to deal with evolving bags, passenger belongings, and

threats. In both cases, sustained effectiveness requires a way to appropriately and

efficiently update the models for new data, or risk obsolescence leading to dangerous

blindspots.

Many machine learning datasets represent singe-time snapshots of the data dis-

tribution, and current continual learning benchmarks fail to capture the slow drift

of the real-world data. The evolution of GAN synthesized samples represents an

opportunity to generate an unlimited number of smoothly evolving datasets for such

experiments. We note that while the setup used here is for binary real/fake classi-

fication, one could also conceivably use a conditional GAN [MO14] to generate an

evolving multi-class classification dataset. We leave this exploration for future work.

5.5.2 Mixture of Eight Gaussians

We show results on a toy dataset consisting of a mixture of eight Gaussians, as

in the example in Figure 5.1. Following the setup of [MPPSD17], the real data

are evenly distributed among eight 2-dimensional Gaussian distributions arranged

in a circle of radius 2, each with covariance 0.02I (see Figure 5.4). We evaluate

our model with Inception Score (ICP) [SGZ+16], which gives a rough measure of

diversity and quality of samples; higher scores imply better performance, with the

true data resulting in a score of around 7.870. For this simple dataset, since we

know the true data distribution, we also calculate the symmetric Kullback–Leibler

divergence (Sym-KL); lower scores mean the generated samples are closer to the true

data. We show computation time, measured in numbers of training iterations per

73

Table 5.1: Iterations per second, inception score, and symmetric KL divergence
comparison on a mixture of eight Gaussians.

Model

Method α λ γ Iter/s ↑ ICP ↑ Sym-KL ↓

GAN - - - 87.59 ± 1.45 2.835 ± 2.325 19.55 ± 3.07
GAN + `2 weight 1 0.01 0 5.968 ± 1.673 15.19 ± 2.67
GAN + historical avg. 1 0.01 0.995 7.305 ± 0.158 13.32 ± 0.88
GAN + SN - - - 49.70 ± 0.13 6.762 ± 2.024 13.37 ± 3.86

GAN + IS 1000 100 0.8 42.26 ± 0.35 7.039 ± 0.294 15.10 ± 1.51
GAN + IS 100 10 0.98 42.29 ± 0.10 7.500 ± 0.147 11.85 ± 0.92
GAN + IS 10 100 0.99 41.07 ± 0.07 7.583 ± 0.242 11.88 ± 0.84
GAN + SN + IS 10 100 0.99 25.69 ± 0.09 7.699 ± 0.048 11.10 ± 1.18

GAN + EWC 1000 100 0.8 82.78 ± 1.55 7.480 ± 0.209 13.00 ± 1.55
GAN + EWC 100 10 0.98 80.63 ± 0.39 7.488 ± 0.222 12.16 ± 1.64
GAN + EWC 10 10 0.99 73.86 ± 0.16 7.670 ± 0.112 11.90 ± 0.76
GAN + SN + EWC 10 10 0.99 44.68 ± 0.11 7.708 ± 0.057 11.48 ± 1.12

second (Iter/s), averaged over the full training of a model on a single Nvidia Titan X

(Pascal) GPU. Each model was run 10 times, with the mean and standard deviation

of each performance metric at the end of 25K iterations reported in Table 5.1.

The performance of EWC-GAN and IS-GAN were evaluated for a number of

hyperparameter settings. We compare our results against a vanilla GAN [GPAM+14],

as well as a state-of-the-art GAN with spectral normalization (SN) [MKKY18] applied

to the discriminator. As spectral normalization augments the discriminator loss in a

way different from continual learning, we can combine the two methods; this variant

is also shown.

Note that a discounted version of discriminator historical averaging [SGZ+16] can

be recovered from the EWC and IS losses if the task rate α = 1 and Qk,i = 1 for all

i and k, a poor approximation to both the Fisher information matrix diagonal and

importance measure. If we also set the historical reference term θ̄∗k and the discount

factor γ to zero, then the EWC and IS losses become `2 weight regularization. These

two special cases are also included for comparison.

74

We observe that augmenting GAN models with EWC and IS consistently results

in generators that better match the true distribution, both qualitatively and quanti-

tatively, for a wide range of hyperparameter settings. EWC-GAN and IS-GAN result

in a better ICP and FID than `2 weight regularization and discounted historical aver-

aging, showing the value of prioritizing protecting important parameters, rather than

all parameters equally. EWC-GAN and IS-GAN also outperform a state-of-the-art

method in SN-GAN. In terms of training time, updating the EWC loss requires for-

ward propagating a new minibatch through the discriminator and updating S and P ,

but even if this is done at every step (α = 1), the resulting algorithm is only slightly

slower than SN-GAN. Moreover, doing so is unnecessary, as higher values of α also

provide strong performance for a much smaller time penalty. Combining EWC with

SN-GAN leads to even better results, showing that the two methods can complement

each other. IS-GAN can also be successfully combined with SN-GAN, but it is slower

than EWC-GAN as it requires tracking the trajectory of parameters at each step.

Sample generation evolution over time is shown in Figure 5.4 of Appendix C.

5.5.3 Image Generation of CelebA and CIFAR-10

Since EWC-GAN achieves similar performance to IS-GAN but at less computational

expense, we focus on the former for experiments on two image datasets, CelebA and

CIFAR-10. Our EWC-GAN implementation is straightforward to add to any GAN

model, so we augment various popular implementations. Comparisons are made with

the TTUR [HRU+17] variants2 of DCGAN [RMC16] and WGAN-GP [GAA+17],

as well as an implementation3 of a spectral normalized [MKKY18] DCGAN (SN-

DCGAN). Without modifying the learning rate or model architecture, we show re-

sults with and without the EWC loss term added to the discriminator for each.

2https://github.com/bioinf-jku/TTUR

3https://github.com/minhnhat93/tf-SNDCGAN

75

Table 5.2: Fréchet Inception Distance and Inception Score on CelebA and CIFAR-10

CelebA CIFAR-10

Method FID ↓ FID ↓ ICP ↑

DCGAN 12.52 41.44 6.97 ± 0.05
DCGAN + EWC 10.92 34.84 7.10 ± 0.05
WGAN-GP - 30.23 7.09 ± 0.06
WGAN-GP + EWC - 29.67 7.44 ± 0.08
SN-DCGAN - 27.21 7.43 ± 0.10
SN-DCGAN + EWC - 25.51 7.58 ± 0.07

Performance is quantified with the Fréchet Inception Distance (FID) [HRU+17] for

both datasets. Since labels are available for CIFAR-10, we also report ICP for that

dataset. Best values are reported in Table 5.2, with samples in Appendix C. In each

model, we see improvement in both FID and ICP from the addition of EWC to the

discriminator.

5.5.4 Text Generation of COCO Captions

We also consider the text generation on the MS COCO Captions dataset [CFL+15],

with the pre-processing in [GLC+18]. Quality of generated sentences is evaluated

by BLEU score [PRWZ02]. Since BLEU-b measures the overlap of b consecutive

words between the generated sentences and ground-truth references, higher BLEU

scores indicate better fluency. Self BLEU uses the generated sentences themselves as

references; lower values indicate higher diversity.

We apply EWC and IS to textGAN [ZGF+17], a recently proposed model for text

generation in which the discriminator uses feature matching to stabilize training.

This model’s results (labeled “EWC” and “IS”) are compared to a Maximum Like-

lihood Estimation (MLE) baseline, as well as several state-of-the-art methods: Seq-

GAN [YZWY17], RankGAN [LLH+17], GSGAN [JGP16] and LeakGAN [GLC+18].

Our variants of textGAN outperforms the vanilla textGAN for all BLEU scores (see

76

Table 5.3: Test BLEU ↑ results on MS COCO

Method MLE SeqGAN RankGAN GSGAN LeakGAN textGAN EWC IS

BLEU-2 0.820 0.820 0.852 0.810 0.922 0.926 0.934 0.933
BLEU-3 0.607 0.604 0.637 0.566 0.797 0.781 0.802 0.791
BLEU-4 0.389 0.361 0.389 0.335 0.602 0.567 0.594 0.578
BLEU-5 0.248 0.211 0.248 0.197 0.416 0.379 0.400 0.388

Table 5.4: Self BLEU ↓ results on MS COCO

Method MLE SeqGAN RankGAN GSGAN LeakGAN textGAN EWC IS

BLEU-2 0.754 0.807 0.822 0.785 0.912 0.843 0.854 0.853
BLEU-3 0.511 0.577 0.592 0.522 0.825 0.631 0.671 0.655
BLEU-4 0.232 0.278 0.288 0.230 0.689 0.317 0.388 0.364

Table 5.3), indicating the effectiveness of addressing the forgetting issue for GAN

training in text generation. EWC/IS + textGAN also demonstrate a significant im-

provement compared with other methods, especially on BLEU-2 and 3. Though our

variants lag slightly behind LeakGAN on BLEU-4 and 5, their self BLEU scores (Ta-

ble 5.4) indicate it generates more diverse sentences. Sample sentence generations

can be found in Appendix C.

5.6 Conclusions

We observe that the alternating training procedure of GAN models results in a con-

tinual learning problem for the discriminator, and training on only the most recent

generations leads to consequences unaccounted for by most models. As such, we pro-

pose augmenting the GAN training objective with a continual learning regularization

term for the discriminator to prevent its parameters from moving too far away from

values that were important for recognizing synthesized samples from previous train-

ing iterations. Since the original EWC and IS losses were proposed for discrete tasks,

we adapt them to the GAN setting. Our implementation is simple to add to almost

77

any variation of GAN learning, and we do so for a number of popular models, showing

a gain in ICP and FID for CelebA and CIFAR-10, as well as BLEU scores for COCO

Captions. More importantly, we demonstrate that GAN and continual learning, two

popular fields studied independently of each other, have the potential to benefit each

other, as new continual learning methods stand to benefit GAN training, and GAN

generated datasets provide new testing grounds for continual learning.

78

Appendix

A. Algorithm

We summarize the continual learning GAN implementations in Algorithm 1 and 2.

Algorithm 1 Continual learning GAN with EWC

1: Input: Training data Dreal, latent distribution p(z), hy-
perparameters of continual learning α, γ, λ, step size ε

2: Output: θ, φ, and generated samples Dgen = {xj}Nj=1

3: for t = 1, ..., T do

4: Noise sample: {zj}mj=1 ∼ p(z)

5: Data sample: {xj}mj=1 ∼ Dreal

6: % Calculate current discriminator loss

7: Lθ = 1
m

∑m
j=1[logDθ(xj)] + 1

m

∑m
j=1[log(1 −

Dθ(Gφ(zj)))]

8: % Update history buffer for previous tasks every α steps

9: if mod (t, α) = 0 then
10: for parameters θi in θ:
11: Qi =

(
∂Lθ
∂θi

)2
% Q is the Fisher for EWC

12: Si = γSi +Qi
13: Pi = γPi +Qiθ

∗
i

14: θ̄∗i = Pi
Si

15: end if

16: % Update discriminator parameter θ, adding EWC

17: L̄θ = Lθ − λ
2

∑
i Sk,i(θi − θ̄∗k,i)

18: θt+1 ← θt + εt
∂L̄θ
∂θt

19: % Update generator parameter φ
20: Lφ = 1

m

∑m
i=1[log(1−Dθ(Gφ(zi)))]

21: φt+1 ← φt − εt
∂Lφ
∂φt

22: end for

79

Algorithm 2 Continual learning GAN with IS

1: Input: Training data Dreal, latent distribution p(z), hy-
perparameters of continual learning α, γ, λ, step size ε

2: Output: θ, φ, and generated samples Dgen = {xj}Nj=1

3: for t = 1, ..., T do

4: Noise sample: {zj}mj=1 ∼ p(z)

5: Data sample: {xj}mj=1 ∼ Dreal

6: % Calculate current discriminator loss

7: Lθ = 1
m

∑m
j=1[logDθ(xj)] + 1

m

∑m
j=1[log(1 −

Dθ(Gφ(zj)))]

8: % Update discriminator parameter θ, adding IS

9: L̄θ = Lθ − λ
2

∑
i Sk,i(θi − θ̄∗k,i)

10: g = ∂L̄θ
∂θt

11: δ = ε∂L̄θ∂θt
12: for θi in θ do
13: ωi = ωi + giδi
14: end for
15: θt+1 ← θt + εt

∂L̄θ
∂θt

16: % Update history buffer for previous tasks every α steps

17: if mod (t, α) = 0 then
18: for parameters θi in θ:
19: Qi = ωi % Q is the Importance measure for IS
20: Si = γSi +Qi
21: Pi = γPi +Qiθ

∗
i

22: θ̄∗i = Pi
Si

23: ω = 0
24: end if

25: % Update generator parameter φ
26: Lφ = 1

m

∑m
i=1[log(1−Dθ(Gφ(zi)))]

27: φt+1 ← φt − εt
∂Lφ
∂φt

28: end for

80

B. Generated MNIST Datasets for Continual Learning Bench-

marking

To produce a smoothly evolving series of datasets for continual learning, we train

a DCGAN on MNIST and generate an entire “fake” dataset of 70K samples every

50 training iterations of the DCGAN generator. We propose learning each of these

generated datasets as individual tasks for continual learning. Selected samples are

shown in Figure 5.3 from the datasets Dgent for t ∈ {5, 10, 15, 20}, each generated

from the same 100 samples of z for all t. Note that we actually trained a conditional

DCGAN, meaning we also have the labels for each generated image. For experiments

in Figure 5.2, we focused on the real versus fake task to demonstrate catastrophic

forgetting in a GAN discriminator and thus ignored the labels, but future experiments

can incorporate such information.

81

(a) Dgen5 (b) Dgen10

(c) Dgen15 (d) Dgen20

Figure 5.3: Image samples from a few generated “fake MNIST” datasets

C. Examples of Generated Samples

Sample generations are plotted during training at 5000 step intervals in Figure 5.4.

While vanilla GAN occasionally recovers the true distribution, more often than not,

the generator collapses and then bounces around. Spectral Normalized GAN con-

verges to the true distribution quickly in most runs, but it mode collapses and exhibits

82

the same behavior as GAN in others. EWC-GAN consistently diffuses to all modes,

tending to find the true distribution sooner with lower α. We omit IS-GAN, as it

performs similarly to EWC-GAN.
GA

N
SN

 G
AN

EW
C

=1
00

0

0

EW
C

=1
0

5000 10000 15000 20000 25000

Figure 5.4: Each row shows the evolution of generator samples at 5000 training
step intervals for GAN, SN-GAN, and EWC-GAN for two α values. The proposed
EWC-GAN models have hyperparameters matching the corresponding α in Table
5.1. Each frame shows 10000 samples drawn from the true eight Gaussians mixture
(red) and 10000 generator samples (blue).

We also show the generated image samples for CIFAR 10 and CelebA in Figure

5.5, and generated text samples for MS COCO Captions in Table 5.5.

83

Table 5.5: Sample sentence generations from EWC + textGAN

a couple of people are standing by some zebras in the background
the view of some benches near a gas station
a brown motorcycle standing next to a red fence
a bath room with a broken tank on the floor
red passenger train parked under a bridge near a river
some snow on the beach that is surrounded by a truck
a cake that has been perform in the background for takeoff
a view of a city street surrounded by trees
two giraffes walking around a field during the day
crowd of people lined up on motorcycles
two yellow sheep with a baby dog in front of other sheep
an intersection sits in front of a crowd of people
a red double decker bus driving down the street corner
an automobile driver stands in the middle of a snowy park
five people at a kitchen setting with a woman
there are some planes at the takeoff station
a passenger airplane flying in the sky over a cloudy sky
three aircraft loaded into an airport with a stop light
there is an animal walking in the water
an older boy with wine glasses in an office
two old jets are in the middle of london
three motorcycles parked in the shade of a crowd
group of yellow school buses parked on an intersection
a person laying on a sidewalk next to a sidewalk talking on a cell phone
a chef is preparing food with a sink and stainless steel appliances

84

(a) CIFAR 10

(b) CelebA

Figure 5.5: Generated image samples, drawn randomly from GANs with EWC
regularization.

85

Chapter 6

Kernel-Based Approaches for Sequence

Modeling: Connections to Neural

Methods

6.1 Introduction

There has been significant recent effort directed at connecting deep learning to kernel

machines [ARTP15, BM17, Mai16, WHSX16]. Specifically, it has been recognized

that a deep neural network may be viewed as constituting a feature mapping x →

ϕθ(x), for input data x ∈ Rm. The nonlinear function ϕθ(x), with model parameters

θ, has an output that corresponds to a d-dimensional feature vector; ϕθ(x) may be

viewed as a mapping of x to a Hilbert space H, where H ⊂ Rd. The final layer

of deep neural networks typically corresponds to an inner product ωᵀϕθ(x), with

weight vector ω ∈ H; for a vector output, there are multiple ω, with ωᵀ
i ϕθ(x) defining

the i-th component of the output. For example, in a deep convolutional neural

network (CNN) [LBD+89], ϕθ(x) is a function defined by the multiple convolutional

layers, the output of which is a d-dimensional feature map; ω represents the fully-

connected layer that imposes inner products on the feature map. Learning ω and

θ, i.e., the cumulative neural network parameters, may be interpreted as learning

within a reproducing kernel Hilbert space (RKHS) [BTA04], with ω the function in

H; ϕθ(x) represents the mapping from the space of the input x to H, with associated

kernel kθ(x, x
′) = ϕθ(x)ᵀϕθ(x

′), where x′ is another input.

Insights garnered about neural networks from the perspective of kernel machines

provide valuable theoretical underpinnings, helping to explain why such models work

86

well in practice. As an example, the RKHS perspective helps explain invariance

and stability of deep models, as a consequence of the smoothness properties of an

appropriate RKHS to variations in the input x [BM17, Mai16]. Further, such insights

provide the opportunity for the development of new models.

Most prior research on connecting neural networks to kernel machines has as-

sumed a single input x, e.g., image analysis in the context of a CNN [ARTP15,

BM17, Mai16]. However, the recurrent neural network (RNN) has also received

renewed interest for analysis of sequential data. For example, long short-term mem-

ory (LSTM) [HS97, GSK+17] and the gated recurrent unit (GRU) [CvMG+14]

have become fundamental elements in many natural language processing (NLP)

pipelines [JZS15, CvMG+14, GH16]. In this context, a sequence of data vectors

(. . . , xt−1, xt, xt+1, . . .) is analyzed, and the aforementioned single-input models are

inappropriate.

In this paper, we extend to recurrent neural networks (RNNs) the concept of

analyzing neural networks from the perspective of kernel machines. Leveraging recent

work on recurrent kernel machines (RKMs) for sequential data [HS12], we make new

connections between RKMs and RNNs, showing how RNNs may be constructed in

terms of recurrent kernel machines, using simple filters. We demonstrate that these

recurrent kernel machines are composed of a memory cell that is updated sequentially

as new data come in, as well as in terms of a (distinct) hidden unit. A recurrent model

that employs a memory cell and a hidden unit evokes ideas from the LSTM. However,

within the recurrent kernel machine representation of a basic RNN, the rate at which

memory fades with time is fixed. To impose adaptivity within the recurrent kernel

machine, we introduce adaptive gating elements on the updated and prior components

of the memory cell, and we also impose a gating network on the output of the model.

We demonstrate that the result of this refinement of the recurrent kernel machine is

87

a model closely related to the LSTM, providing new insights on the LSTM and its

connection to kernel machines.

Continuing with this framework, we also introduce new concepts to models of

the LSTM type. The refined LSTM framework may be viewed as convolving learned

filters across the input sequence and using the convolutional output to constitute the

time-dependent memory cell. Multiple filters, possibly of different temporal lengths,

can be utilized, like in the CNN. One recovers the CNN [LB95, ZZL15, Kim14] and

Gated CNN [DFAG17] models of sequential data as special cases, by turning off

elements of the new LSTM setup. From another perspective, we demonstrate that

the new LSTM-like model may be viewed as introducing gated memory cells and

feedback to a CNN model of sequential data.

In addition to developing the aforementioned models for sequential data, we

demonstrate them in an extensive set of experiments, focusing on applications in

natural language processing (NLP) and in analysis of multi-channel, time-dependent

local field potential (LFP) recordings from mouse brains. Concerning the latter, we

demonstrate marked improvements in performance of the proposed methods relative

to recently-developed alternative approaches [LMM+17].

6.2 Recurrent Kernel Network

Consider a sequence of vectors (. . . , xt−1, xt, xt+1, . . .), with xt ∈ Rm. For a language

model, xt is the embedding vector for the t-th word wt in a sequence of words. To

model this sequence, we introduce yt = Uht, with the recurrent hidden variable

satisfying

ht = f(W (x)xt +W (h)ht−1 + b) (6.1)

where ht ∈ Rd, U ∈ RV×d, W (x) ∈ Rd×m, W (h) ∈ Rd×d, and b ∈ Rd. In the context

of a language model, the vector yt ∈ RV may be fed into a nonlinear function to

88

predict the next word wt+1 in the sequence. Specifically, the probability that wt+1

corresponds to i ∈ {1, . . . , V } in a vocabulary of V words is defined by element i of

vector Softmax(yt +β), with bias β ∈ RV . In classification, such as the LFP-analysis

example in Section 6.6, V is the number of classes under consideration.

We constitute the factorization U = AE, where A ∈ RV×j and E ∈ Rj×d, often

with j � V . Hence, we may write yt = Ah′t, with h′t = Eht; the columns of A may

be viewed as time-invariant factor loadings, and h′t represents a vector of dynamic

factor scores. Let zt = [xt, ht−1] represent a column vector corresponding to the

concatenation of xt and ht−1; then ht = f(W (z)zt + b) where W (z) = [W (x),W (h)] ∈

Rd×(d+m). Computation of Eht corresponds to inner products of the rows of E with

the vector ht. Let ei ∈ Rd be a column vector, with elements corresponding to row

i ∈ {1, . . . , j} of E. Then component i of h′t is

h′i,t = eᵀi ht = eᵀi f(W (z)zt + b) (6.2)

We view f(W (z)zt + b) as mapping zt into a RKHS H, and vector ei is also assumed

to reside within H. We consequently assume

ei = f(W (z)z̃i + b) (6.3)

where z̃i = [x̃i, h̃0]. Note that here h̃0 also depends on index i, which we omit

for simplicity; as discussed below, x̃i will play the primary role when performing

computations.

eᵀi ht = eᵀi f(W (z)zt + b) = f(W (z)z̃i + b)ᵀf(W (z)zt + b) = kθ(z̃i, zt) (6.4)

where kθ(z̃i, zt) = h(z̃i)
ᵀh(zt) is a Mercer kernel [SS02]. Particular kernel choices

correspond to different functions f(W (z)zt + b), and θ is meant to represent kernel

parameters that may be adjusted.

89

We initially focus on kernels of the form kθ(z̃, zt) = qθ(z̃
ᵀzt) = h̃ᵀ1ht,

1 where

qθ(·) is a function of parameters θ, ht = h(zt), and h̃1 is the implicit latent vector

associated with the inner product, i.e., h̃1 = f(W (x)x̃ + W (h)h̃0 + b). As discussed

below, we will not need to explicitly evaluate ht or h̃1 to evaluate the kernel, taking

advantage of the recursive relationship in (6.1). In fact, depending on the choice

of qθ(·), the hidden vectors may even be infinite-dimensional. However, because of

the relationship qθ(z̃
ᵀzt) = h̃ᵀ1ht, for rigorous analysis qθ(·) should satisfy Mercer’s

condition [Gen01, SS02].

The vectors (h̃1, h̃0, h̃−1, . . .) are assumed to satisfy the same recurrence setup as

(6.1), with each vector in the associated sequence (x̃t, x̃t−1, . . .) assumed to be the

same x̃i at each time, i.e., associated with ei, (x̃t, x̃t−1, . . .)→ (x̃i, x̃i, . . .). Stepping

backwards in time three steps, for example, one may show

kθ(z̃i, zt) = qθ[x̃
ᵀ
i xt + qθ[x̃

ᵀ
i xt−1 + qθ[x̃

ᵀ
i xt−2 + qθ[x̃

ᵀ
i xt−3 + h̃ᵀ−4ht−4]]]] (6.5)

The inner product h̃ᵀ−4ht−4 encapsulates contributions for all times further backwards,

and for a sequence of length N , h̃ᵀ−Nht−N plays a role analogous to a bias. As

discussed below, for stability the repeated application of qθ(·) yields diminishing

(fading) contributions from terms earlier in time, and therefore for large N the impact

of h̃ᵀ−Nht−N on kθ(z̃i, zt) is small.

The overall model may be expressed as

h′t = qθ(ct) , ct = c̃t + qθ(ct−1) , c̃t = X̃xt (6.6)

where ct ∈ Rj is a memory cell at time t, row i of X̃ corresponds to x̃ᵀi , and qθ(ct)

operates pointwise on the components of ct (see Figure 6.1). At the start of the

1One may also design recurrent kernels of the form kθ(z̃, zt) = qθ(‖z̃ − zt‖22) [HS12], as for a
Gaussian kernel, but if vectors xt and filters x̃i are normalized (e.g., xᵀt xt = x̃ᵀi x̃i = 1), then
qθ(‖z̃ − zt‖22) reduces to qθ(z̃

ᵀzt).

90

(a) (b) (c)

Figure 6.1: a) A traditional recurrent neural network (RNN), with the factorization
U = AE. b) A recurrent kernel machine (RKM), with an implicit hidden state and
recurrence through recursion. c) The recurrent kernel machine expressed in terms of
a memory cell.

sequence of length N , qθ(ct−N) may be seen as a vector of biases, effectively corre-

sponding to h̃ᵀNht−N ; we henceforth omit discussion of this initial bias for notational

simplicity, and because for sufficiently large N its impact on h′t is small.

Note that via the recursive process by which ct is evaluated in (6.6), the kernel

evaluations reflected by qθ(ct) are defined entirely by the elements of the sequence

(c̃t, c̃t−1, c̃t−2, . . .). Let c̃i,t represent the i-th component in vector c̃t, and define

x≤t = (xt, xt−1, xt−2, . . .). Then the sequence (c̃i,t, c̃i,t−1, c̃i,t−2, . . .) is specified by

convolving in time x̃i with x≤t, denoted x̃i ∗ x≤t. Hence, the j components of the

sequence (c̃t, c̃t−1, c̃t−2, . . .) are completely specified by convolving x≤t with each of

the j filters, x̃i, i ∈ {1, . . . , j}, i.e., taking an inner product of x̃i with the vector in

x≤t at each time point.

In (6.4) we represented h′i,t = qθ(ci,t) as h′i,t = kθ(z̃i, zt); now, because of the

recursive form of the model in (6.1), and because of the assumption kθ(z̃i, zt) =

qθ(z̃
ᵀ
i zt), we have demonstrated that we may express the kernel equivalently as kθ(x̃i∗

x≤t), to underscore that it is defined entirely by the elements at the output of the

convolution x̃i ∗ x≤t. Hence, we may express component i of h′t as h′i,t = kθ(x̃i ∗ x≤t).

91

Component l ∈ {1, . . . , V } of yt = Ah′t may be expressed

yl,t =

j∑
i=1

Al,ikθ(x̃i ∗ x≤t) (6.7)

where Al,i represents component (l, i) of matrix A. Considering (6.7), the connection

of an RNN to an RKHS is clear, as made explicit by the kernel kθ(x̃i ∗ x≤t). The

RKHS is manifested for the final output yt, with the hidden ht now absorbed within

the kernel, via the inner product (6.4). The feedback imposed via latent vector ht

is constituted via update of the memory cell ct = c̃t + qθ(ct−1) used to evaluate the

kernel.

Rather than evaluating yt as in (6.7), it will prove convenient to return to (6.6).

Specifically, we may consider modifying (6.6) by injecting further feedback via h′t,

augmenting (6.6) as

h′t = qθ(ct) , ct = c̃t + qθ(ct−1) , c̃t = X̃xt + H̃h′t−1 (6.8)

where H̃ ∈ Rj×j, and recalling yt = Ah′t (see Figure 6.2a for illustration). In (6.8)

the input to the kernel is dependent on the input elements (xt, xt−1, . . .) and is now

also a function of the kernel outputs at the previous time, via h′t−1. However, note

that h′t is still specified entirely by the elements of x̃i ∗ x≤t, for i ∈ {1, . . . , j}.

6.3 Choice of Recurrent Kernels & Introduction

of Gating Networks

6.3.1 Fixed Kernel Parameters & Time-invariant Memory-

cell Gating

The function qθ(·) discussed above may take several forms, the simplest of which is

a linear kernel, with which (6.8) takes the form

h′t = ct , ct = σ2
i c̃t + σ2

fct−1 , c̃t = X̃xt + H̃h′t−1 (6.9)

92

where σ2
i and σ2

f (using analogous notation from [HS12]) are scalars, with σ2
f < 1 for

stability. The scalars σ2
i and σ2

f may be viewed as static (i.e., time-invariant) gating

elements, with σ2
i controlling weighting on the new input element to the memory

cell, and σ2
f controlling how much of the prior memory unit is retained; given σ2

f <

1, this means information from previous time steps tends to fade away and over

time is largely forgotten. However, such a kernel leads to time-invariant decay of

memory: the contribution c̃t−N from N steps before to the current memory ct is

(σiσ
N
f)2c̃t−N , meaning that it decays at a constant exponential rate. Because the

information contained at each time step can vary, this can be problematic. This

suggests augmenting the model, with time-varying gating weights, with memory-

component dependence on the weights, which we consider below.

6.3.2 Dynamic Gating Networks & LSTM-like Model

Recent work has shown that dynamic gating can be seen as making a recurrent

network quasi-invariant to temporal warpings [TO18]. Motivated by the form of the

model in (6.9) then, it is natural to impose dynamic versions of σ2
i and σ2

f ; we also

introduce dynamic gating at the output of the hidden vector. This yields the model:

h′t = ot � ct , ct = ηt � c̃t + ft � ct−1 , c̃t = Wcz
′
t (6.10)

ot = σ(Woz
′
t + bo) , ηt = σ(Wηz

′
t + bη) , ft = σ(Wfz

′
t + bf) (6.11)

where z′t = [xt, h
′
t−1], and Wc encapsulates X̃ and H̃. In (6.10)-(6.11) the symbol �

represents a pointwise vector product (Hadamard); Wc, Wo, Wη and Wf are weight

matrices; bo, bη and bf are bias vectors; and σ(α) = 1/(1 + exp(−α)). In (6.10),

ηt and ft play dynamic counterparts to σ2
i and σ2

f , respectively. Further, ot, ηt and

ft are vectors, constituting vector-component-dependent gating. Note that starting

from a recurrent kernel machine, we have thus derived a model closely resembling

the LSTM. We call this model RKM-LSTM (see Figure 6.2).

93

(a) (b)

Figure 6.2: a) Recurrent kernel machine, with feedback, as defined in (6.8). b)
Making a linear kernel assumption and adding input, forget, and output gating, this
model becomes the RKM-LSTM.

Concerning the update of the hidden state, h′t = ot � ct in (6.10), one

may also consider appending a hyperbolic-tangent tanh nonlinearity: h′t = ot �

tanh(ct). However, recent research has suggested not using such a nonlinearity

[LLZ17, DFAG17, CFB+18], and this is a natural consequence of our recurrent kernel

analysis. Using h′t = ot�tanh(ct), the model in (6.10) and (6.11) is in the form of the

LSTM, except without the nonlinearity imposed on the memory cell c̃t, while in the

LSTM a tanh nonlinearity (and biases) is employed when updating the memory cell

[HS97, GSK+17], i.e., for the LSTM c̃t = tanh(Wcz
′
t + bc). If ot = 1 for all time t (no

output gating network), and if c̃t = Wcxt (no dependence on h′t−1 for update of the

memory cell), this model reduces to the recurrent additive network (RAN) [LLZ17].

While separate gates ηt and ft were constituted in (6.10) and (6.11) to operate

on the new and prior composition of the memory cell, one may also also consider

a simpler model with memory cell updated ct = (1 − ft) � c̃t + ft � ct−1; this was

referred to as having a Coupled Input and Forget Gate (CIFG) in [GSK+17]. In such

a model, the decisions of what to add to the memory cell and what to forget are

made jointly, obviating the need for a separate input gate ηt. We call this variant

RKM-CIFG.

94

6.4 Extending the Filter Length

6.4.1 Generalized Form of Recurrent Model

Consider a generalization of (6.1):

ht = f(W (x0)xt +W (x−1)xt−1 + · · ·+W (x−n+1)xt−n+1 +W (h)ht−1 + b) (6.12)

where W (x·) ∈ Rd×m, W (h) ∈ Rd×d, and therefore the update of the hidden state ht
2

depends on data observed n ≥ 1 time steps prior, and also on the previous hidden

state ht−1. Analogous to (6.3), we may express

ei = f(W (x0)x̃i,0 +W (x−1)x̃i,−1 + · · ·+W (x−n+1)x̃i,−n+1 +W (h)h̃i + b) (6.13)

The inner product f(W (x0)xt + W (x−1)xt−1 + · · · + W (x−n+1)xt−n+1 + W (h)ht−1 +

b)ᵀf(W (x0)x̃i,0 +W (x−1)x̃i,−1 + · · ·+W (x−n+1)x̃i,−n+1 +W (h)h̃i + b) is assumed repre-

sented by a Mercer kernel, and h′i,t = eᵀi ht.

Let Xt = (xt, xt−1, . . . , xt−n+1) ∈ Rm×n be an n-gram input with zero padding if

t < (n− 1), and X̃ = (X̃0, X̃−1, . . . , X̃−n+1) be n sets of filters, with the i-th rows of

X̃0, X̃−1, . . . , X̃−n+1 collectively represent the i-th n-gram filter, with i ∈ {1, . . . , j}.

Extending Section 6.2, the kernel is defined

h′t = qθ(ct) , ct = c̃t + qθ(ct−1) , c̃t = X̃ ·Xt (6.14)

where X̃ · Xt ≡ X̃0xt + X̃−1xt−1 + · · · + X̃−n+1xt−n+1 ∈ Rj. Note that X̃ · Xt

corresponds to the t-th component output from the n-gram convolution of the filters

X̃ and the input sequence; therefore, similar to Section 6.2, we represent h′t = qθ(ct)

as h′t = kθ(X̃ ∗ x≤t), emphasizing that the kernel evaluation is a function of outputs

of the convolution X̃ ∗x≤t, here with n-gram filters. Like in the CNN [LB95, ZZL15,

Kim14], different filter lengths (and kernels) may be considered to constitute different

components of the memory cell.

2Note that while the same symbol is used as in (6.12), ht clearly takes on a different meaning when
n > 1.

95

6.4.2 Linear Kernel, CNN and Gated CNN

For the linear kernel discussed in connection to (6.9), equation (6.14) becomes

h′t = ct = σ2
i (X̃ ·Xt) + σ2

fh
′
t−1 (6.15)

For the special case of σ2
f = 0 and σ2

i equal to a constant (e.g., σ2
i = 1), (6.15) reduces

to a convolutional neural network (CNN), with a nonlinear operation typically applied

subsequently to h′t.

Rather than setting σ2
i to a constant, one may impose dynamic gating, yielding

the model (with σ2
f = 0)

h′t = ηt � (X̃ ·Xt) , ηt = σ(X̃η ·Xt + bη) (6.16)

where X̃η are distinct convolutional filters for calculating ηt, and bη is a vector of

biases. The form of the model in (6.16) corresponds to the Gated CNN [DFAG17],

which we see as a a special case of the recurrent model with linear kernel, and dynamic

kernel weights (and without feedback, i.e., σ2
f = 0). Note that in (6.16) a nonlinear

function is not imposed on the output of the convolution X̃ ·Xt, there is only dynamic

gating via multiplication with ηt; the advantages of which are discussed in [DFAG17].

Further, the n-gram input considered in (6.12) need not be consecutive. If spacings

between inputs of more than 1 are considered, then the dilated convolution (e.g., as

used in [vdODZ+16]) is recovered.

6.4.3 Feedback and the Generalized LSTM

Now introducing feedback into the memory cell, the model in (6.8) is extended to

h′t = qθ(ct) , ct = c̃t + qθ(ct−1) , c̃t = X̃ ·Xt + H̃h′t−1 (6.17)

96

Again motivated by the linear kernel, generalization of (6.17) to include gating net-

works is

h′t = ot � ct , ct = ηt � c̃t + ft � ct−1 , c̃t = X̃ ·Xt + H̃h′t−1 (6.18)

ot = σ(X̃o·Xt+W̃oh
′
t−1+bo), ηt = σ(X̃η·Xt+W̃ηh

′
t−1+bη), ft = σ(X̃f ·Xt+W̃fh

′
t−1+bf)

(6.19)

where yt = Ah′t and X̃o, X̃η, and X̃f are separate sets of n-gram convolutional filters

akin to X̃. As an n-gram generalization of (6.10)-(6.11), we refer to (6.18)-(6.19) as

an n-gram RKM-LSTM.

The model in (6.18) and (6.19) is similar to the LSTM, with important differ-

ences: (i) there is not a nonlinearity imposed on the update to the memory cell, c̃t,

and therefore there are also no biases imposed on this cell update; (ii) there is no

nonlinearity on the output; and (iii) via the convolutions with X̃, X̃o, X̃η, and X̃f ,

the memory cell can take into account n-grams, and the length of such sequences ni

may vary as a function of the element of the memory cell.

6.5 Related Work

In our development of the kernel perspective of the RNN, we have emphasized that

the form of the kernel kθ(z̃i, zt) = qθ(z̃
ᵀ
i zt) yields a recursive means of kernel evaluation

that is only a function of the elements at the output of the convolutions X̃ ∗ x≤t or

X̃ ∗ x≤t, for 1-gram and (n > 1)-gram filters, respectively. This underscores that at

the heart of such models, one performs convolutions between the sequence of data

(. . . , xt+1, xt, xt−1, . . .) and filters X̃ or X̃. Consideration of filters of length greater

than one (in time) yields a generalization of the traditional LSTM. The dependence

of such models entirely on convolutions of the data sequence and filters is evocative

of CNN and Gated CNN models for text [LB95, ZZL15, Kim14, DFAG17], with this

97

made explicit in Section 6.4.2 as a special case.

The Gated CNN in (6.16) and the generalized LSTM in (6.18)-(6.19) both employ

dynamic gating. However, the generalized LSTM explicitly employs a memory cell

(and feedback), and hence offers the potential to leverage long-term memory. While

memory affords advantages, a noted limitation of the LSTM is that computation

of h′t is sequential, undermining parallel computation, particularly while training

[DFAG17, VSP+17]. In the Gated CNN, h′t comes directly from the output of the

gated convolution, allowing parallel fitting of the model to time-dependent data.

While the Gated CNN does not employ recurrence, the filters of length n > 1 do

leverage extended temporal dependence. Further, via deep Gated CNNs [DFAG17],

the effective support of the filters at deeper layers can be expansive.

Recurrent kernels of the form kθ(z̃, zt) = qθ(z̃
ᵀzt) were also developed in [HS12],

but with the goal of extending recurrent kernel machines to sequential inputs, rather

than making connections with RNNs. The formulation in Section 6.2 has two im-

portant differences with that prior work. First, we employ the same vector x̃i for all

shift positions t of the inner product x̃ᵀi xt. By contrast, in [HS12] effectively infinite-

dimensional filters are used, because the filter x̃t,i changes with t. This makes imple-

mentation computationally impractical, necessitating truncation of the long temporal

filter. Additionally, the feedback of h′t in (6.8) was not considered, and as discussed

in Section 6.3.2, our proposed setup yields natural connections to long short-term

memory (LSTM) [HS97, GSK+17].

Prior work analyzing neural networks from an RKHS perspective has largely been

based on the feature mapping ϕθ(x) and the weight ω [ARTP15, BM17, Mai16,

WHSX16]. For the recurrent model of interest here, function ht = f(W (x)xt +

W (h)ht−1 + b) plays a role like ϕθ(x) as a mapping of an input xt to what may

be viewed as a feature vector ht. However, because of the recurrence, ht is a function

98

of (xt, xt−1, . . .) for an arbitrarily long time period prior to time t:

ht(xt, xt−1, . . .) = f(W (x)xt + b+W (h)f(W (x)xt−1 + b+W (h)f(W (x)xt−2 + b+ . . .)))

(6.20)

However, rather than explicitly working with ht(xt, xt−1, . . .), we focus on the kernel

kθ(z̃i, zt) = qθ(z̃
ᵀ
i zt) = kθ(x̃i ∗ x≤t).

The authors of [LJBJ17] derive recurrent neural networks from a string kernel

by replacing the exact matching function with an inner product and assume the

decay factor to be a nonlinear function. Convolutional neural networks are recovered

by replacing a pointwise multiplication with addition. However, the formulation

cannot recover the standard LSTM formulation, nor is there a consistent formulation

for all the gates. The authors of [RKF19] introduce a kernel-based update rule to

approximate backpropagation through time (BPTT) for RNN training, but still follow

the standard RNN structure.

Previous works have considered recurrent models with n-gram inputs as in (6.12).

For example, strongly-typed RNNs [BG16] consider bigram inputs, but the previous

input xt−1 is used as a replacement for ht−1 rather than in conjunction, as in our for-

mulation. Quasi-RNNs [BMXS17] are similar to [BG16], but generalize them with a

convolutional filter for the input and use different nonlinearities. Inputs correspond-

ing to n-grams have also been implicitly considered by models that use convolutional

layers to extract features from n-grams that are then fed into a recurrent network

(e.g., [CL16, WYLZ16, ZSLL15]). Relative to (6.18), these models contain an extra

nonlinearity f(·) from the convolution and projection matrix W (x) from the recurrent

cell, and no longer recover the CNN [LB95, ZZL15, Kim14] or Gated CNN [DFAG17]

as special cases.

99

6.6 Experiments

In the following experiments, we consider several model variants, with nomenclature

as follows. The n-gram LSTM developed in Sec. 6.4.3 is a generalization of the

standard LSTM [HS97] (for which n = 1). We denote RKM-LSTM (recurrent

kernel machine LSTM) as corresponding to (6.10)-(6.11), which resembles the n-

gram LSTM, but without a tanh nonlinearity on the cell update c̃t or emission ct.

We term RKM-CIFG as a RKM-LSTM with ηt = 1 − ft, as discussed in Section

6.3.2. Linear Kernel w/ ot corresponds to (6.10)-(6.11) with ηt = σ2
i and ft = σ2

f ,

with σ2
i and σ2

f time-invariant constants; this corresponds to a linear kernel for the

update of the memory cell, and dynamic gating on the output, via ot. We also

consider the same model without dynamic gating on the output, i.e., ot = 1 for all t

(with a tanh nonlinearity on the output), which we call Linear Kernel. The Gated

CNN corresponds to the model in [DFAG17], which is the same as Linear Kernel w/

ot, but with σ2
f = 0 (i.e., no memory). Finally, we consider a CNN model [LB95],

that is the same as the Linear Kernel model, but without feedback or memory, i.e.,

z′t = xt and σ2
f = 0. For all of these, we may also consider an n-gram generalization

as introduced in Section 6.4. For example, a 3-gram RKM-LSTM corresponds to

(6.18)-(6.19), with length-3 convolutional filters in the time dimension. The models

are summarized in Table 6.1. All experiments are run on a single NVIDIA Titan X

GPU.

Document Classification We show results for several popular document clas-

sification datasets [ZZL15] in Table 6.2. The AGNews and Yahoo! datasets are topic

classification tasks, while Yelp Full is sentiment analysis and DBpedia is ontology

classification. The same basic network architecture is used for all models, with the

only difference being the choice of recurrent cell, which we make single-layer and

unidirectional. Hidden representations h′t are aggregated with mean pooling across

100

Table 6.1: Model variants under consideration, assuming 1-gram inputs. Concate-
nating additional inputs xt−1, . . . , xt−n+1 to z′t in the Input column yields the corre-
sponding n-gram model. Number of model parameters are shown for input xt ∈ Rm

and output h′t ∈ Rd.

Model Parameters Input Cell Output

LSTM [HS97] (nm+ d)(4d) z′t = [xt, h
′
t−1] ct = ηt � tanh(c̃t) + ft � ct−1 h′t = ot � tanh(ct)

RKM-LSTM (nm+ d)(4d) z′t = [xt, h
′
t−1] ct = ηt � c̃t + ft � ct−1 h′t = ot � ct

RKM-CIFG (nm+ d)(3d) z′t = [xt, h
′
t−1] ct = (1− ft)� c̃t + ft � ct−1 h′t = ot � ct

Linear Kernel w/ ot (nm+ d)(2d) z′t = [xt, h
′
t−1] ct = σ2

i c̃t + σ2
fct−1 h′t = ot � ct

Linear Kernel (nm+ d)(d) z′t = [xt, h
′
t−1] ct = σ2

i c̃t + σ2
fct−1 h′t = tanh(ct)

Gated CNN [DFAG17] (nm)(2d) z′t = xt ct = σ2
i c̃t h′t = ot � ct

CNN [LB95] (nm)(d) z′t = xt ct = σ2
i c̃t h′t = tanh(ct)

time, followed by two fully connected layers, with the second having output size cor-

responding to the number of classes of the dataset. We use 300-dimensional GloVe

[PSM14] as our word embedding initialization and set the dimensions of all hidden

units to 300. We follow the same preprocessing procedure as in [WLW+18]. Layer

normalization [BKH16] is performed after the computation of the cell state ct. For

the Linear Kernel w/ ot and the Linear Kernel, we set3 σ2
i = σ2

f = 0.5.

Notably, the derived RKM-LSTM model performs comparably to the standard

LSTM model across all considered datasets. We also find the CIFG version of the

RKM-LSTM model to have similar accuracy. As the recurrent model becomes less

sophisticated with regard to gating and memory, we see a corresponding decrease in

classification accuracy. This decrease is especially significant for Yelp Full, which re-

quires a more intricate comprehension of the entire text to make a correct prediction.

This is in contrast to AGNews and DBpedia, where the success of the 1-gram CNN

indicates that simple keyword matching is sufficient to do well. We also observe that

generalizing the model to consider n-gram inputs typically improves performance;

the highest accuracies for each dataset were achieved by an n-gram model.

Language Modeling We also perform experiments on popular word-level

3σ2
i and σ2

f can also be learned, but we found this not to have much effect on the final performance.

101

Table 6.2: Document classification accuracy for 1-gram and 3-gram versions of var-
ious models. Total parameters of each model are shown, excluding word embeddings
and the classifier.

Parameters AGNews DBpedia Yahoo! Yelp Full
Model 1-gram 3-gram 1-gram 3-gram 1-gram 3-gram 1-gram 3-gram 1-gram 3-gram

LSTM 720K 1.44M 91.82 92.46 98.98 98.97 77.74 77.72 66.27 66.37
RKM-LSTM 720K 1.44M 91.76 92.28 98.97 99.00 77.70 77.72 65.92 66.43
RKM-CIFG 540K 1.08M 92.29 92.39 98.99 99.05 77.71 77.91 65.93 65.92
Linear Kernel w/ ot 360K 720K 92.07 91.49 98.96 98.94 77.41 77.53 65.35 65.94
Linear Kernel 180K 360K 91.62 91.50 98.65 98.77 76.93 76.53 61.18 62.11
Gated CNN [DFAG17] 180K 540K 91.54 91.78 98.37 98.77 72.92 76.66 60.25 64.30
CNN [LB95] 90K 270K 91.20 91.53 98.17 98.52 72.51 75.97 59.77 62.08

Table 6.3: Language model perplexity (PPL) on validation and test sets of the Penn
Treebank and Wikitext-2 language modeling tasks.

PTB Wikitext-2
Model PPL valid PPL test PPL valid PPL test

LSTM [HS97, MKS18] 61.2 58.9 68.74 65.68
RKM-LSTM 60.3 58.2 67.85 65.22
RKM-CIFG 61.9 59.5 69.12 66.03
Linear Kernel w/ ot 72.3 69.7 84.23 80.21

language generation datasets Penn Tree Bank (PTB) [MSM93] and Wikitext-2

[MXBS17], reporting validation and test perplexities (PPL) in Table 6.3. We adopt

AWD-LSTM [MKS18] as our base model4, replacing the standard LSTM with RKM-

LSTM, RKM-CIFG, and Linear Kernel w/ ot to do our comparison. We keep all other

hyperparameters the same as the default. Here we consider 1-gram filters, as they

performed best for this task; given that the datasets considered here are smaller than

those for the classification experiments, 1-grams are less likely to overfit. Note that

the static gating on the update of the memory cell (Linear Kernel w/ ot) does con-

siderably worse than the models with dynamic input and forget gates on the memory

cell. The RKM-LSTM model consistently outperforms the traditional LSTM, again

showing that the models derived from recurrent kernel machines work well in practice

for the data considered.

4We use the official codebase https://github.com/salesforce/awd-lstm-lm and report exper-
iment results before two-step fine-tuning.

102

Table 6.4: Mean leave-one-out classification accuracies for mouse LFP data. For
each model, (n = 40)-gram filters are considered, and the number of filters in each
model is 30.

Model
n-gram
LSTM

RKM-
LSTM

RKM-
CIFG

Linear
Kernel w/ ot

Linear
Kernel

Gated
CNN [DFAG17]

CNN [LMM+17]

Accuracy 80.24 79.02 77.58 76.11 73.13 76.02 73.40

LFP Classification We perform experiments on a Local Field Potential (LFP)

dataset. The LFP signal is multi-channel time series recorded inside the brain to

measure neural activity. The LFP dataset used in this work contains recordings from

29 mice (wild-type or CLOCK∆19 [vEMY13]), while the mice were (i) in their home

cages, (ii) in an open field, and (iii) suspended by their tails. There are a total

of m = 11 channels and the sampling rate is 1000Hz. The goal of this task is to

predict the state of a mouse from a 1 second segment of its LFP recording as a 3-

way classification problem. In order to test the model generalizability, we perform

leave-one-out cross-validation testing: data from each mouse is left out as testing

iteratively while the remaining mice are used as training.

SyncNet [LMM+17] is a CNN model with specifically designed wavelet filters

for neural data. We incorporate the SyncNet form of n-gram convolutional filters

into our recurrent framework (we have parameteric n-gram convolutional filters, with

parameters learned). As was demonstrated in Section 6.4.2, the CNN is a memory-

less special case of our derived generalized LSTM. An illustration of the modified

model (Figure 6.3) can be found in Appendix 6.7, along with other further details on

SyncNet.

While the filters of SyncNet are interpretable and can prevent overfitting (be-

cause they have a small number of parameters), the same kind of generalization to

an n-gram LSTM can be made without increasing the number of learned parameters.

We do so for all of the recurrent cell types in Table 6.1, with the CNN correspond-

103

ing to the original SyncNet model. Compared to the original SyncNet model, our

newly proposed models can jointly consider the time dependency within the whole

signal. The mean classification accuracies across all mice are compared in Table 6.4,

where we observe substantial improvements in prediction accuracy through the ad-

dition of memory cells to the model. Thus, considering the time dependency in the

neural signal appears to be beneficial for identifying hidden patterns. Classification

performances per subject (Figure 6.4) can be found in Appendix A.

6.7 Conclusions

The principal contribution of this paper is a new perspective on gated RNNs, leverag-

ing concepts from recurrent kernel machines. From that standpoint, we have derived

a model closely connected to the LSTM [HS97, GSK+17] (for convolutional filters of

length one), and have extended such models to convolutional filters of length greater

than one, yielding a generalization of the LSTM. The CNN [LB95, ZZL15, Kim14],

Gated CNN [DFAG17] and RAN [LLZ17] models are recovered as special cases of

the developed framework. We have demonstrated the efficacy of the derived models

on NLP and neuroscience tasks, for which our RKM variants show comparable or

better performance than the LSTM. In particular, we observe that extending LSTM

variants with convolutional filters of length greater than one can significantly improve

the performance in LFP classification relative to recent prior work.

104

Appendix

A. More Details of the LFP Experiment

In this section, we provide more details on the Sync-RKM model. In order to in-

corporate the SyncNet model [LMM+17] into our framework, the weight W (x) =[
W (x0),W (x−1), · · · ,W (x−n+1)

]
defined in Eq. (6.12) is parameterized as wavelet fil-

ters. If there is a total of K filters, then W (x) is of size K × C × n.

Specifically, suppose the n-gram input data at time t is given as Xt =

[xt−n+1, · · · ,xt] ∈ RC×n with channel number C and window size n. The k-th filter

for channel c can be written as

W
(x)
kc = αkc cos (ωkt+ φkc) exp(−βkt2) (6.21)

W
(x)
kc has the form of the Morlet wavelet base function. Parameters to be learned are

αkc, ωk, φkc and βk for c = 1, · · ·C and k = 1, · · · , K. t is a time grid of length n,

which is a constant vector. In the recurrent cell, each W
(x)
kc is convolved with the c-th

channel of Xt using 1-d convolution. Figure 6.3 gives the framework of this Sync-

RKM model. For more details of how the filter works, please refer to the original

work [LMM+17].

When applying the Sync-RKM model on LFP data, we choose the window size

as n = 40 to consider the time dependencies in the signal. Since the experiment

is performed by treating each mouse as test iteratively, we show the subject-wise

classification accuracy in Figure 6.4. The proposed model does consistently better

across nearly all subjects.

105

𝑪

𝑻
1 𝑡 𝑇

Sync-
RKM

Sync-
RKM

Sync-
RKM … Sync-

RKM
Sync-
RKM

…

2 3

𝒉𝒕 = 𝒇 𝑿𝒕 +𝑾(𝒉)𝒉𝒕−𝟏 + 𝒃

𝑾(𝒙)

Figure 6.3: Illustration of the proposed model with SyncNet filters. The input LFP
signal is given by the C×T matrix. The SyncNet filters (right) are applied on signal
chunks at each time step.

Figure 6.4: Subject-wise classification accuracy comparison for the various models
on the LFP dataset.

106

Chapter 7

Conclusions

With these works, we explore the possibility of applying deep learning to automatic

threat recognition for X-ray baggage screening at airport checkpoints, successfully

creating functional prototype machines with full integration of convolutional object

detection algorithms with X-ray scanning hardware [AB20]. These prototype sys-

tems are capable of simulating real-world deployment, scanning physical bags and

projecting predictions directly on the constructed projections on display screens, all

in real-time. We initially restricted our study to 4 threat classes: firearms, sharps,

blunts, and LAGs, collecting a large dataset of scans on both Smiths and Rapiscan

machines, and we find that deep learning models can indeed do an impressive job

finding these types of objects, both on held-out evaluation sets and during live tests.

Training a variety of models, we found that given a time budget of about 1 second

per bag, Faster R-CNN [RHGS15] coupled with a ResNet [HZRS16] feature extractor

performed best, and a simple OR-gate scheme to combine predictions across multiple

views successfully boosted overall performance.

While these results represent a promising start, demonstrating the potential of

deep learning algorithms for automatic threat recognition, some additional studies

need to be conducted to see these models officially deployed at airports. For example,

our data collection effort was limited to select categories of prohibited items, and

specifically only subsets of those classes. Assembling a broader dataset providing

more coverage of all potential threats may be necessary to some degree for automated

threat detectors to be able to fully generalize to all the items they will encounter in

the real world. A study of human factors [SM98] may also be necessary. Not only

107

is it important to determine the best ways to alert a human operator, but it is also

critical to determine to what degree over-reliance on an automated-assist may lead

to reduced human attention [LS04].

Several ideas from the deep learning literature are also worthy avenues of fu-

ture extensions. We have explored positive-unlabeled (PU) learning [YLC20],

continual learning [LLWC18a, LLWC18b, MLC20], and understanding neural net-

works [LWL+19]. While we did not necessarily show experimental results for these

ideas, applying these concepts to automated threat recognition at airport checkpoints

may be worthy directions of future research. For example, domain adaptation meth-

ods [GUA+16] have been shown to improve performance by leveraging Stream-of-

Commerce data to show models more examples of benign backgrounds [SSLC20].

A study of distributed or federated learning methods [DCM+12, MMR+17] may

also help scale the training of these systems across airports. Knowledge distilla-

tion or model compression [HVD15, CGL+20] methods can reduce the size and cost

of the model, both speeding up inference time and requiring less computational re-

sources for each machine. Finally, for sensitive applications, a study of adversarial

attacks [SZS+14, PMG+17, ILCC20, ILW+20] would also be useful for understanding

how these models may fail. While not impossible, such attacks on X-ray scan threat

detection are fortunately still challenging, as inserted confounders must be robust

to 3-dimensional rotation in X-ray transmission material properties to successfully

attack an X-ray scanner. Many of these fields of machine learning represent oppor-

tunities to further improve engineered deep automatic threat recognition systems.

Deep learning [LBH15, GBC16] has made exciting progress over the past decade,

and the potential for applying some of these methods to real-world applications like

X-ray baggage screening shows promise to improve security at airports. Although an

initial exploration, our efforts have demonstrated that it is indeed possible to build

108

these systems, producing working prototypes that successfully find certain classes of

threat objects, even when hidden. With more data collection, system engineering,

and incorporation of other ideas from the machine learning system, we hope such

systems may eventually see real-world deployment.

109

Bibliography

[AAB+15] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mane, Rajat Monga,
Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viegas, Oriol Vinyals, Pete
Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Distributed Systems. Software available from tensorflow.org, 2015.

[AB17] Samet Akcay and Toby P Breckon. An Evaluation of Region Based
Object Detection Strategies within X-ray Baggage Security Imagery.
IEEE International Conference on Image Processing, 2017.

[AB20] Samet Akcay and Toby Breckon. Towards automatic threat detection:
A survey of advances of deep learning within x-ray security imaging.
arXiv:2001.01293, 2020.

[Adm19] Federal Aviation Administration. Air Traffic By The Numbers.
https://www.faa.gov/air traffic/by the numbers/, 2019.

[AHB+18] Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney, Mark
Johnson, Stephen Gould, and Lei Zhang. Bottom-Up and Top-Down
Attention for Image Captioning and Visual Question Answering. Com-
puter Vision and Pattern Recognition, 2018.

[AKDB16] Samet Akcay, Mikolaj E Kundegorski, Michael Devereux, and Toby P
Breckon. Transfer Learning Using Convolutional Neural Networks for
Object Classification within X-ray Baggage Security Imagery. IEEE
International Conference on Image Processing, 2016.

[AKWB18] Samet Akcay, Mikolaj E Kundegorski, Chris G Willcocks, and Toby P
Breckon. Using Deep Convolutional Neural Network Architectures for
Object Classification and Detection within X-ray Baggage Security Im-
agery. IEEE Transactions on Information Forensics and Security, 2018.

[ALA+15] Aishwarya Agrawal, Jiasen Lu, Stanislaw Antol, Margaret Mitchell,
C Lawrence Zitnick, Dhruv Batra, and Devi Parikh. VQA: Visual
Question Answering. International Conference on Computer Vision,
2015.

110

[ARTP15] Fabio Anselmi, Lorenzo Rosasco, Cheston Tan, and Tomaso Pog-
gio. Deep Convolutional Networks are Hierarchical Kernel Machines.
arXiv:1508.01084, 2015.

[BBB13] Muhammet Bastan, Wonmin Byeon, and Thomas Breuel. Object
Recognition in Multi-View Dual Energy X-ray Images. British Machine
Vision Conference, 2013.

[BG16] David Balduzzi and Muhammad Ghifary. Strongly-Typed Recurrent
Neural Networks. International Conference on Machine Learning, 2016.

[BKH16] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer Nor-
malization. arXiv:1607.06450, 2016.

[BM17] Alberto Bietti and Julien Mairal. Invariance and Stability of Deep Con-
volutional Representations. Neural Information Processing Systems,
2017.

[BMXS17] James Bradbury, Stephen Merity, Caiming Xiong, and Richard Socher.
Quasi-recurrent neural networks. International Conference on Learning
Representations, 2017.

[BTA04] Alain Berlinet and Christine Thomas-Agnan. Reproducing Kernel
Hilbert spaces in Probability and Statistics. Kluwer Publishers, 2004.

[BV16] Hakan Bilen and Andrea Vedaldi. Weakly Supervised Deep Detection
Networks. Computer Vision and Pattern Recognition, 2016.

[BYB11] Muhammet Bastan, Mohammad Reza Yousefi, and Thomas M Breuel.
Visual Words on Baggage X-Ray Images. Computer Analysis of Images
and Patterns, 2011.

[CFB+18] Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin Johnson, Wolfgang
Macherey, George Foster, Llion Jones, Niki Parmar, Mike Schuster,
Zhifeng Chen, Yonghui Wu, and Macduff Hughes. The Best of Both
Worlds: Combining Recent Advances in Neural Machine Translation.
arXiv:1804.09849, 2018.

[CFL+15] Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam,
Saurabh Gupta, Piotr Doĺı, and C Lawrence Zitnick. Microsoft COCO
Captions: Data Collection and Evaluation Server. arXiv:1504.00325,
2015.

[CGL+20] Liqun Chen, Zhe Gan, Kevin J Liang, Dong Wang, Ke Bai, Yitong Li,
Chenyang Tao, Jingjing Liu, and Lawrence Carin. Wasserstein Con-
trastive Representation Distillation. arXiv preprint, 2020.

111

[CL16] Jianpeng Cheng and Mirella Lapata. Neural Summarization by Extract-
ing Sentences and Words. Association for Computational Linguistics,
2016.

[CLJ+17] Tong Che, Yanran Li, Athul Paul Jacob, Yoshua Bengio, and Wenjie
Li. Mode Regularized Generative Adversarial Networks. International
Conference on Learning Representations, 2017.

[COR+16] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld,
Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and
Bernt Schiele. The Cityscapes Dataset for Semantic Urban Scene Un-
derstanding. Computer Vision and Pattern Recognition, 2016.

[CvMG+14] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry
Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learn-
ing Phrase Representations using RNN Encoder-Decoder for Statistical
Machine Translation. Empirical Methods in Natural Language Process-
ing, 2014.

[DCLT19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding. North American Chapter of the Association for Com-
putational Linguistics, 2019.

[DCM+12] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu
Devin, Mark Mao, Marc’aurelio Ranzato, Andrew Senior, Paul Tucker,
Ke Yang, et al. Large Scale Distributed Deep Networks. Neural Infor-
mation Processing Systems, 2012.

[DDGL99] Francesco De Comité, François Denis, Rémi Gilleron, and Fabien
Letouzey. Positive and Unlabeled Examples Help Learning. Algorithmic
Learning Theory, 1999.

[DDS+09] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei
Li. ImageNet: A large-scale hierarchical image database. In Computer
Vision and Pattern Recognition, 2009.

[Den98] François Denis. PAC Learning from Positive Statistical Queries. Algo-
rithmic Learning Theory, 1998.

[DFAG17] Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Lan-
guage Modeling with Gated Convolutional Networks. International
Conference on Machine Learning, 2017.

[DGM17] Ishan Durugkar, Ian Gemp, and Sridhar Mahadevan. Generative Multi-
Adversarial Networks. International Conference on Learning Represen-
tations, 2017.

112

[DLHS16] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-FCN: Object Detection
via Region-based Fully Convolutional Networks. In Neural Information
Processing Systems, 2016.

[DNS14] Marthinus C Du Plessis, Gang Niu, and Masashi Sugiyama. Analysis
of learning from positive and unlabeled data. In Neural Information
Processing Systems, 2014.

[DNS15] Marthinus Du Plessis, Gang Niu, and Masashi Sugiyama. Convex for-
mulation for learning from positive and unlabeled data. International
Conference on Machine Learning, 2015.

[DZM+18] Xuanyi Dong, Liang Zheng, Fan Ma, Yi Yang, and Deyu Meng. Few-
shot Object Detection. Transactions on Pattern Analysis and Machine
Intelligence, 2018.

[EN08] Charles Elkan and Keith Noto. Learning Classifiers from Only Positive
and Unlabeled Data. International Conference on Knowledge Discovery
and Data Mining, 2008.

[EVW+10] Mark Everingham, Luc Van Gool, Christopher K.I. Williams, John
Winn, and Andrew Zisserman. The pascal visual object classes (VOC)
challenge. International Journal of Computer Vision, 2010.

[FG18] Sebastian Farquhar and Yarin Gal. Towards Robust Evaluations of
Continual Learning. arXiv:1805.09733, 2018.

[FLTZ10] Zhouyu Fu, Guojun Lu, Kai Ming Ting, and Dengsheng Zhang. A Sur-
vey of Audio-based Music Classification and Annotation. IEEE Trans-
actions on Multimedia, 2010.

[GAA+17] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin,
and Aaron Courville. Improved Training of Wasserstein GANs. Neural
Information Processing Systems, 2017.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT press, Cambridge, MA, USA, 1st ed edition, 2016.

[GDDM14] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich
feature hierarchies for accurate object detection and semantic segmen-
tation. In Computer Vision and Pattern Recognition, 2014.

[Gen01] Marc G Genton. Classes of Kernels for Machine Learning: A Statistics
Perspective. Journal of Machine Learning Research, 2001.

113

[GH16] David Golub and Xiaodong He. Character-Level Question Answering
with Attention. Empirical Methods in Natural Language Processing,
2016.

[Gir15] Ross Girshick. Fast R-CNN. In International Conference on Computer
Vision, 2015.

[GKN+18] Arnab Ghosh, Viveka Kulharia, Vinay Namboodiri, Iit Kanpur, Philip
H S Torr, and Puneet K Dokania. Multi-Agent Diverse Generative
Adversarial Networks. Computer Vision and Pattern Recognition, 2018.

[GLC+18] Jiaxian Guo, Sidi Lu, Han Cai, Weinan Zhang, Yong Yu, and Jun
Wang. Long Text Generation via Adversarial Training with Leaked
Information. AAAI Conference on Artificial Intelligence, 2018.

[GMX+13] Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua
Bengio. An Empirical Investigation of Catastrophic Forgetting in
Gradient-Based Neural Networks. arXiv:1312.6211, 2013.

[GPAM+14] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-
erative Adversarial Nets. Neural Information Processing Systems, 2014.

[GSK+17] Klaus Greff, Rupesh Kumar Srivastava, Jan Koutńık, Bas R Steune-
brink, and Jürgen Schmidhuber. LSTM: A Search Space Odyssey.
Transactions on Neural Networks and Learning Systems, 2017.

[GSR+18] Chunhui Gu, Chen Sun, David A Ross, Carl Vondrick, Caroline Panto-
faru, Yeqing Li, Sudheendra Vijayanarasimhan, George Toderici, Su-
sanna Ricco, Rahul Sukthankar, Cordelia Schmid, and Jitendra Malik.
AVA: A Video Dataset of Spatio-Temporally Localized Atomic Visual
Actions. Computer Vision and Pattern Recognition, 2018.

[GUA+16] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain,
Hugo Larochelle, François Laviolette, Mario Marchand, and Victor
Lempitsky. Domain-adversarial training of neural networks. The Jour-
nal of Machine Learning Research, 2016.

[HGDG17] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B Girshick. Mask
R-CNN. International Conference on Computer Vision, 2017.

[HGT+14] Judy Hoffman, Sergio Guadarrama, Eric Tzeng, Jeff Donahue, Ross B
Girshick, Trevor Darrell, and Kate Saenko. LSDA: Large Scale De-
tection Through Adaptation. Neural Information Processing Systems,
2014.

114

[HNLP18] Quan Hoang, Tu Dinh Nguyen, Trung Le, and Dinh Phung. MGAN:
Training Generative Adversarial Nets with Multiple Generators. Inter-
national Conference on Learning Representations, 2018.

[HRS+17] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop
Korattikara, Alireza Fathi, Ian Fischer, Zbigniew Wojna, Yang Song,
Sergio Guadarrama, and Et al. Speed/Accuracy Trade-offs for Mod-
ern Convolutional Object Detectors. In Computer Vision and Pattern
Recognition, 2017.

[HRU+17] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard
Nessler, and Sepp Hochreiter. GANs Trained by a Two Time-Scale
Update Rule Converge to a Local Nash Equilibrium. Neural Informa-
tion Processing Systems, 2017.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory.
Neural Computation, 1997.

[HS12] Michiel Hermans and Benjamin Schrauwen. Recurrent Kernel Ma-
chines: Computing with Infinite Echo State Networks. Neural Com-
putation, 2012.

[HSS12] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural Net-
works for Machine Learning – Lecture 6a – Overview of Mini-Batch
Gradient Descent, 2012.

[HVD15] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the Knowledge
in a Neural Network. arXiv:1503.02531, 2015.

[HWT+15] Brody Huval, Tao Wang, Sameep Tandon, Jeff Kiske, Will Song, Joel
Pazhayampallil, Mykhaylo Andriluka, Pranav Rajpurkar, Toki Migi-
matsu, Royce Cheng-Yue, Fernando Mujica, Adam Coates, and An-
drew Y. Ng. An Empirical Evaluation of Deep Learning on Highway
Driving. arXiv:1504.01716, 2015.

[HZC+17] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
Applications, 2017.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Resid-
ual Learning for Image Recognition. In Computer Vision and Pattern
Recognition, 2016.

[ILCC20] Nathan Inkawhich, Kevin J Liang, Lawrence Carin, and Yiran Chen.
Transferable Perturbations of Deep Feature Distributions. International
Conference on Learning Representations, 2020.

115

[ILW+20] Nathan Inkawhich, Kevin J Liang, Binghui Wang, Matthew Inkawhich,
Lawrence Carin, and Yiran Chen. Perturbing Across the Feature Hier-
archy to Improve Standard and Strict Blackbox Attack Transferability.
arXiv:2004.14861, 2020.

[IS15] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. Interna-
tional Conference on Machine Learning, 2015.

[IZJ+17] Haroon Idrees, Amir R Zamir, Yu-Gang Jiang, Alex Gorban, Ivan
Laptev, Rahul Sukthankar, and Mubarak Shah. The THUMOS chal-
lenge on action recognition for videos “in the wild”. Computer Vision
and Image Understanding, 2017.

[JGP16] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization
with gumbel-softmax. arXiv:1611.01144, 2016.

[JZL+18] Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei.
MentorNet: Learning Data-Driven Curriculum for Very Deep Neural
Networks on Corrupted Labels. International Conference on Machine
Learning, 2018.

[JZS15] Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. An Empirical
Exploration of Recurrent Network Architectures. International Confer-
ence on Machine Learning, 2015.

[KAD+16] Mikolaj E Kundegorski, Samet Akçay, Michael Devereux, Andre Mou-
ton, and Toby P Breckon. On Using Feature Descriptors as Visual
Words for Object Detection within X-ray Baggage Security Screening.
In International Conference on Imaging for Crime Detection and Pre-
vention, 2016.

[KALL18] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progres-
sive Growing of GANs for Improved Quality, Stability, and Variation.
International Conference on Learning Representations, 2018.

[Kim14] Yoon Kim. Convolutional Neural Networks for Sentence Classification.
Empirical Methods in Natural Language Processing, 2014.

[KNDS17] Ryuichi Kiryo, Gang Niu, Marthinus C Du Plessis, and Masashi
Sugiyama. Positive-Unlabeled Learning with Non-Negative Risk Es-
timator. Neural Information Processing Systems, 2017.

[KPR+17] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness,
Guillaume Desjardins, Andrei A Rusu, Kieran Milan, John Quan,

116

Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hassabis, Clau-
dia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming Catas-
trophic Forgetting in Neural Networks. Proceedings of the National
Academy of Sciences, 2017.

[KRA+18] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan
Krasin, Jordi Pont-Tuset, Shahab Kamali, Stefan Popov, Matteo Mal-
loci, Tom Duerig, and Vittorio Ferrari. The Open Images Dataset V4:
Unified image classification, object detection, and visual relationship
detection at scale. arXiv:1811.00982, 2018.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet
Classification with Deep Convolutional Neural Networks. In Neural
Information Processing Systems, 2012.

[KW05] Jens Krüger and Rüdiger Westermann. Linear Algebra Operators for
GPU Implementation of Numerical Algorithms. In ACM SIGGRAPH
2005 Courses, 2005.

[KZG+17] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata,
Joshua Kravitz, Stephanie Chen, Yannis Kalantidis, Li-Jia Li, David A
Shamma, Michael S Bernstein, and Li Fei-Fei. Visual Genome: Con-
necting Language and Vision Using Crowdsourced Dense Image Anno-
tations. International Journal Computer Vision, 2017.

[LAE+16] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott
Reed, Cheng-Yang Fu, and Alexander C Berg. SSD: Single Shot Multi-
Box Detector. European Conference on Computer Vision, 2016.

[LB95] Yann LeCun and Yoshua Bengio. Convolutional Networks for Images,
Speech, and Time Series. The Handbook of Brain Theory and Neural
Networks, 1995.

[LBD+89] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson,
Richard E Howard, Wayne Hubbard, and Lawrence D Jackel. Back-
propagation Applied to Handwritten Zip Code Recognition. Neural
Computation, 1989.

[LBH15] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
Nature, 521(7553):436–444, 2015.

[LDG00] Fabien Letouzey, François Denis, and Rémi Gilleron. Learning from
Positive and Unlabeled Examples. Algorithmic Learning Theory, 2000.

[LGH+17] Rebecca Sawyer Lee, Francisco Gimenez, Assaf Hoogi, Kanae Kawai
Miyake, Mia Gorovoy, and Daniel L Rubin. A curated mammography

117

data set for use in computer-aided detection and diagnosis research.
Nature Scientific Data, 2017.

[LHG+18] Kevin J Liang, Geert Heilmann, Christopher Gregory, Souleymane O
Diallo, David Carlson, Gregory P Spell, John B Sigman, Kris Roe, and
Lawrence Carin. Automatic Threat Recognition of Prohibited Items at
Aviation Checkpoint with X-ray Imaging: A Deep Learning Approach.
SPIE Anomaly Detection and Imaging with X-Rays (ADIX) III, 2018.

[LHP+15] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas
Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Con-
tinuous Control with Deep Reinforcement Learning. arXiv:1509.02971,
2015.

[LJBJ17] Tao Lei, Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Deriving
Neural Architectures from Sequence and Graph Kernels. International
Conference on Machine Learning, 2017.

[LLH+17] Kevin Lin, Dianqi Li, Xiaodong He, Zhengyou Zhang, and Ming-Ting
Sun. Adversarial ranking for language generation. Neural Information
Processing Systems, 2017.

[LLWC18a] Kevin J Liang, Chunyuan Li, Guoyin Wang, and Lawrence Carin. Gen-
erative Adversarial Network Training is a Continual Learning Problem.
arXiv:1811.11083, 2018.

[LLWC18b] Kevin J Liang, Chunyuan Li, Guoyin Wang, and Lawrence Carin. Gen-
erative Adversarial Networks and Continual Learning. Neural Informa-
tion Processing Systems: Continual Learning Workshop, 2018.

[LLZ17] Kenton Lee, Omer Levy, and Luke Zettlemoyer. Recurrent Additive
Networks. arXiv:1705.07393, 2017.

[LMB+14] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Per-
ona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft
COCO: Common Objects in Context. European Conference on Com-
puter Vision, 2014.

[LMM+17] Yitong Li, Michael Murias, Samantha Major, Geraldine Dawson, Kafui
Dzirasa, Lawrence Carin, and David E Carlson. Targeting EEG/LFP
Synchrony with Neural Nets. Neural Information Processing Systems,
2017.

[LMS+17] Jiwei Li, Will Monroe, Tianlin Shi, Sébastien Jean, Alan Ritter, and
Dan Jurafsky. Adversarial Learning for Neural Dialogue Generation.
Empirical Methods in Natural Language Processing, 2017.

118

[Low99] David G Lowe. Object Recognition from Local Scale-Invariant Features.
International Conference on Computer Vision, 1999.

[LS04] John D Lee and Katrina A See. Trust in Automation: Designing for
Appropriate Reliance. Human Factors, 2004.

[LSD15] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully Convo-
lutional Networks for Semantic Segmentation. Computer Vision and
Pattern Recognition, 2015.

[LSLW16] Anders Larsen, Søren Sønderby, Hugo Larochelle, and Ole Winther.
Autoencoding beyond pixels using a learned similarity metric. Interna-
tional Conference on Machine Learning, 2016.

[LSS+19] Kevin J Liang, John B Sigman, Gregory P Spell, Dan Strellis, William
Chang, Felix Liu, Tejas Mehta, and Lawrence Carin. Toward Automatic
Threat Recognition for Airport X-ray Baggage Screening with Deep
Convolutional Object Detection. arXiv:1912.06329, 2019.

[LWL+19] Kevin J Liang, Guoyin Wang, Yitong Li, Ricardo Henao, and Lawrence
Carin. Kernel-Based Approaches for Sequence Modeling: Connections
to Neural Methods. Neural Information Processing Systems, 2019.

[MAD+12] Inês C Moreira, Igor Amaral, Inês Domingues, António Cardoso,
Maria João Cardoso, and Jaime S Cardoso. INbreast: Toward a Full-
field Digital Mammographic Database. Academic Radiology, 2012.

[Mai16] Julien Mairal. End-to-End Kernel Learning with Supervised Convolu-
tional Kernel Networks. Neural Information Processing Systems, 2016.

[MC89] Michael McCloskey and Neal J Cohen. Catastrophic Interference in
Connectionist Networks: The Sequential Learning Problem. The Psy-
chology of Learning and Motivation, 1989.

[MKKY18] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi
Yoshida. Spectral Normalization for Generative Adversarial Networks.
International Conference on Learning Representations, 2018.

[MKS+15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu,
Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, An-
dreas K Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie,
Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level con-
trol through deep reinforcement learning. Nature, 2015.

119

[MKS18] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regulariz-
ing and Optimizing LSTM Language Models. International Conference
on Learning Representations, 2018.

[MLC20] Nikhil Mehta, Kevin J Liang, and Lawrence Carin. Bayesian Nonpara-
metric Weight Factorization for Continual Learning. arXiv:2004.10098,
2020.

[MMR+17] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. Communication-Efficient Learning of Deep Net-
works from Decentralized Data. Artificial Intelligence and Statistics,
2017.

[MNG17] Lars Mescheder, Sebastian Nowozin, and Andreas Geiger. The Numer-
ics of GANs. Neural Information Processing Systems, 2017.

[MO14] Mehdi Mirza and Simon Osindero. Conditional Generative Adversarial
Nets. arXiv:1411.1784, 2014.

[MPPSD17] Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. Un-
rolled Generative Adversarial Networks. International Conference on
Learning Representations, 2017.

[MSA16] Domingo Mery, Erick Svec, and Marco Arias. Object Recognition in
Baggage Inspection Using Adaptive Sparse Representations of X-ray
Images. Image and Video Technology, 2016.

[MSM93] Mitchell P Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz.
Building a Large Annotated Corpus of English: The Penn Treebank.
Association for Computational Linguistics, 1993.

[MXBS17] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher.
Pointer Sentinel Mixture Models. International Conference on Learning
Representations, 2017.

[NBC17] Behnam Neyshabur, Srinadh Bhojanapalli, and Ayan Chakrabarti.
Stabilizing GAN Training with Multiple Random Projections.
arXiv:1705.07831, 2017.

[NK17] Vaishnavh Nagarajan and J Zico Kolter. Gradient descent GAN op-
timization is locally stable. Neural Information Processing Systems,
2017.

[NV06] Alexander Neubeck and Luc Van Gool. Efficient non-maximum sup-
pression. In International Conference on Pattern Recognition, 2006.

120

[OBLS15] Maxime Oquab, Léon Bottou, Ivan Laptev, and Josef Sivic. Is Object
Localization for Free? Weakly-supervised Learning with Convolutional
Neural Networks. Computer Vision and Pattern Recognition, 2015.

[ODZ+16] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan,
Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and
Koray Kavukcuoglu. Wavenet: A Generative Model for Raw Audio.
arXiv:1609.03499, 2016.

[PGH+16] Yunchen Pu, Zhe Gan, Ricardo Henao, Xin Yuan, Chunyuan Li, An-
drew Stevens, and Lawrence Carin. Variational Autoencoder for Deep
Learning of Images, Labels and Captions. Neural Information Process-
ing Systems, 2016.

[PKP+19] German Ignacio Parisi, Ronald Kemker, Jose L Part, Christopher
Kanan, and Stefan Wermter. Continual Lifelong Learning with Neural
Networks: A Review. Neural Networks, 2019.

[PMG+17] Nicolas Papernot, Patrick D McDaniel, Ian J Goodfellow, Somesh Jha,
Z Berkay Celik, and Ananthram Swami. Practical Black-Box Attacks
against Machine Learning. AsiaCCS, 2017.

[PRWZ02] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU:
a Method for Automatic Evaluation of Machine Translation. Associa-
tion for Computational Linguistics, 2002.

[PSM14] Jeffrey Pennington, Richard Socher, and Christopher D Manning.
GloVe: Global Vectors for Word Representation. Empirical Methods
in Natural Language Processing, 2014.

[Qia99] Ning Qian. On the Momentum Term in Gradient Descent Learning
Algorithms. Neural Computation, 1999.

[RASC14] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Ste-
fan Carlsson. CNN Features off-the-shelf: an Astounding Baseline for
Recognition. In Computer Vision and Pattern Recognition, 2014.

[Rat90] Roger Ratcliff. Connectionist Models of Recognition Memory: Con-
straints Imposed by Learning and Forgetting Functions. Psychology
Review, 1990.

[RDGF16] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You
Only Look Once: Unified, Real-Time Object Detection. Computer Vi-
sion and Pattern Recognition, 2016.

121

[RDS+15] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large
Scale Visual Recognition Challenge. International Journal of Computer
Vision, 2015.

[RF17] Joseph Redmon and Ali Farhadi. YOLO9000: Better, Faster, Stronger.
In Computer Vision and Pattern Recognition, jul 2017.

[RFB15] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convo-
lutional Networks for Biomedical Image Segmentation. Medical Image
Computing and Computer Assisted Intervention, 2015.

[RGBYO18] Alexandre Rame, Emilien Garreau, Hedi Ben-Younes, and Charles Ol-
lion. OMNIA Faster R-CNN: Detection in the wild through dataset
merging and soft distillation. arXiv:1812.02611, 2018.

[RHGS15] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-
CNN: Towards Real-Time Object Detection with Region Proposal Net-
works. In Neural Information Processing Systems, 2015.

[RJMG17] Thomas W Rogers, Nicolas Jaccard, Edward J Morton, and Lewis D
Griffin. Automated X-ray Image Analysis for Cargo Security: Critical
Review and Future Promise. Journal of X-ray Science and Technology,
2017.

[RKF19] Christopher Roth, Ingmar Kanitscheider, and Ila Fiete. Kernel RNN
Learning (KeRNL). International Conference on Learning Representa-
tions, 2019.

[RMC16] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised Rep-
resentation Learning with Deep Convolutional Generative Adversarial
Networks. International Conference on Learning Representations, 2016.

[RW15] Mrigank Rochan and Yang Wang. Weakly supervised localization of
novel objects using appearance transfer. Computer Vision and Pattern
Recognition, 2015.

[SBSL18] Ari Seff, Alex Beatson, Daniel Suo, and Han Liu. Continual Learning
in Generative Adversarial Nets. arXiv:1705.08395, 2018.

[SGZ+16] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec
Radford, and Xi Chen. Improved Techniques for Training GANs. Neural
Information Processing Systems, 2016.

122

[SHM+16] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Lau-
rent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis
Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of Go with deep neural networks and tree search. Nature,
2016.

[SIVA16] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alex Alemi.
Inception-v4, Inception-ResNet and the Impact of Residual Connections
on Learning. International Conference on Learning Representations
Workshop, 2016.

[SM98] Mark S Sanders and Ernest James McCormick. Human Factors in
Engineering and Design. Industrial Robot: An International Journal,
1998.

[SPT+17] Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Josh Susskind, Wenda
Wang, and Russ Webb. Learning from Simulated and Unsupervised
Images through Adversarial Training. Computer Vision and Pattern
Recognition, 2017.

[SS02] Bernhard Scholkopf and Alexander J Smola. Learning with Kernels.
MIT Press, 2002.

[SSLC20] John B Sigman, Gregory P Spell, Kevin J Liang, and Lawrence Carin.
Background Adaptive Faster R-CNN for Semi-supervised Convolutional
Object Detection of Threats in X-ray Images. SPIE Anomaly Detection
and Imaging with X-Rays (ADIX) V, 2020.

[SSSG17] Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta.
Revisiting Unreasonable Effectiveness of Data in Deep Learning Era.
International Conference on Computer Vision, 2017.

[SVR+17] Akash Srivastava, Lazar Valkov, Chris Russell, Michael U Gutmann,
and Charles Sutton. VEEGAN: Reducing Mode Collapse in GANs using
Implicit Variational Learning. Neural Information Processing Systems,
2017.

[SW17] Yunus Saatchi and Andrew Gordan Wilson. Bayesian GAN. Neural
Information Processing Systems, 2017.

[SZ15] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional
Networks for Large-Scale Image Recognition. International Conference
on Learning Representations, 2015.

[SZS12] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. UCF101:
A dataset of 101 human actions classes from videos in the wild. T.
Technical Report CRCV-TR-12-01, University of Central Florida, 2012.

123

[SZS+14] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Du-
mitru Erhan, Ian J Goodfellow, and Rob Fergus. Intriguing properties
of neural networks. In International Conference on Learning Represen-
tations, 2014.

[TMB13] Diana Turcsany, Andre Mouton, and Toby P Breckon. Improving
Feature-Based Object Recognition for X-Ray Baggage Security Screen-
ing Using Primed Visual Words. International Conference on Industrial
Technology, 2013.

[TO18] Corentin Tallec and Yann Ollivier. Can Recurrent Neural Networks
Warp Time? International Conference on Learning Representations,
2018.

[TSA17] Passenger Screening Algorithm Challenge.
https://www.kaggle.com/c/passenger-screening-algorithm-
challenge/overview/description, 2017.

[TSA20] TSA Year in Review: 2019. https://www.tsa.gov/blog/2020/01/15/tsa-
year-review-2019, 2020.

[TSdC+19] Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam
Trischler, Yoshua Bengio, and Geoffrey J Gordon. An Empirical Study
of Example Forgetting during Deep Neural Network Learning. Interna-
tional Conference on Learning Representations, 2019.

[TTTV18] Hoang Thanh-Tung, Truyen Tran, and Svetha Venkatesh. On Catas-
trophic Forgetting and Mode Collapse in Generative Adversarial Net-
works. arXiv:1807.04015, 2018.

[TWG+16] Yuxing Tang, Josiah Wang, Boyang Gao, Emmanuel Dellandrea,
Robert Gaizauskas, and Liming Chen. Large Scale Semi-Supervised
Object Detection Using Visual and Semantic Knowledge Transfer. Com-
puter Vision and Pattern Recognition, 2016.

[UNS+18] Thomas Unterthiner, Bernhard Nessler, Calvin Seward, Günter Klam-
bauer, Martin Heusel, Hubert Ramsauer, and Sepp Hochreiter.
Coulomb GANs: Provably Optimal Nash Equilibria Via Potential
Fields. International Conference on Learning Representations, 2018.

[VAC+17] Andreas Veit, Neil Alldrin, Gal Chechik, Ivan Krasin, Abhinav Gupta,
and Serge Belongie. Learning From Noisy Large-Scale Datasets With
Minimal Supervision. Computer Vision and Pattern Recognition, 2017.

[vdODZ+16] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan,
Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and

124

Koray Kavukcuoglu. WaveNet: A Generative Model for Raw Audio.
arXiv:1609.03499, 2016.

[vEMY13] Jordy van Enkhuizen, Arpi Minassian, and Jared W Young. Further
evidence for Clock∆19 mice as a model for bipolar disorder mania using
cross-species tests of exploration and sensorimotor gating. Behavioural
Brain Research, 2013.

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention
Is All You Need. Neural Information Processing Systems, 2017.

[Wag20] Jay Wagner. TSA Year in Review: A Record Setting
2018. https://www.tsa.gov/blog/2019/02/07/tsa-year-review-record-
setting-2018, 2020.

[WBS+19] Zhe Wu, Navaneeth Bodla, Bharat Singh, Mahyar Najibi, Rama Chel-
lappa, and Larry S Davis. Soft Sampling for Robust Object Detection.
British Machine Vision Conference, 2019.

[WHSX16] Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P
Xing. Deep Kernel Learning. International Conference on Artificial
Intelligence and Statistics, 2016.

[WLW+18] Guoyin Wang, Chunyuan Li, Wenlin Wang, Yizhe Zhang, Dinghan
Shen, Xinyuan Zhang, Ricardo Henao, and Lawrence Carin. Joint Em-
bedding of Words and Labels for Text Classification. Association for
Computational Linguistics, 2018.

[WPL+17] Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi
Bagheri, and Ronald M Summers. ChestX-ray8: Hospital-Scale Chest
X-Ray Database and Benchmarks on Weakly-Supervised Classification
and Localization of Common Thorax Diseases. Computer Vision and
Pattern Recognition, 2017.

[WSC+16] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad
Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao,
Klaus Macherey, et al. Google’s Neural Machine Translation Sys-
tem: Bridging the Gap Between Human and Machine Translation.
arXiv:1609.08144, 2016.

[WYLZ16] Jin Wang, Liang-Chih Yu, K Robert Lai, and Xuejie Zhang. Dimen-
sional Sentiment Analysis Using a Regional CNN-LSTM Model. Asso-
ciation for Computational Linguistics, 2016.

125

[XXXT17] Yixing Xu, Chang Xu, Chao Xu, and Dacheng Tao. Multi-Positive and
Unlabeled Learning. In International Joint Conferences on Artificial
Intelligence, 2017.

[YCBL14] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How trans-
ferable are features in deep neural networks? Neural Information Pro-
cessing Systems, 2014.

[YLC20] Yuewei Yang, Kevin J Liang, and Lawrence Carin. Object Detection
as a Positive-Unlabeled Problem. arXiv:2002.04672, 2020.

[YWLS17] Ke Yan, Xiaosong Wang, Le Lu, and Ronald M Summers. DeepLesion:
Automated Deep Mining, Categorization and Detection of Significant
Radiology Image Findings using Large-Scale Clinical Lesion Annota-
tions. arXiv:1710.01766, 2017.

[YZWY17] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. SeqGAN: Se-
quence Generative Adversarial Nets with Policy Gradient. AAAI Con-
ference on Artificial Intelligence, 2017.

[ZBB+17] Chiyuan Zhang, Samy Bengio, Google Brain, Moritz Hardt, Benjamin
Recht, Oriol Vinyals, and Google Deepmind. Understanding Deep
Learning Requires Re-thinking Generalization. International Confer-
ence on Learning Representations, 2017.

[ZF14] Matthew D Zeiler and Rob Fergus. Visualizing and Understanding
Convolutional Networks. In European Conference on Computer Vision,
sep 2014.

[ZGF+17] Yizhe Zhang, Zhe Gan, Kai Fan, Zhi Chen, Ricardo Henao, Dinghan
Shen, and Lawrence Carin. Adversarial feature matching for text gen-
eration. International Conference on Machine Learning, 2017.

[ZPG17] Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual Learning
Through Synaptic Intelligence. International Conference on Machine
Learning, 2017.

[ZSLL15] Chunting Zhou, Chonglin Sun, Zhiyuan Liu, and Francis C M Lau.
A C-LSTM Neural Network for Text Classification. arXiv:1511.08630,
2015.

[ZVSL18] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le.
Learning Transferable Architectures for Scalable Image Recognition.
In Computer Vision and Pattern Recognition, 2018.

126

[ZZL15] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level Convolu-
tional Networks for Text Classification. Neural Information Processing
Systems, 2015.

127

Biography

Kevin J Liang earned his Bachelor of Science in Engineering (BSE) degrees in Elec-

trical and Computer Engineering (ECE) and Biomedical Engineering (BME) from

Duke University in 2015, graduating summa cum laude and with ECE departmental

distinction. As one of the top 2 students in both ECE and BME, he simultaneously

also received the George Sherrerd III Memorial Award and the Da Vinci Award, re-

spectively. He obtained a Master of Science (MS) in ECE from Duke University in

2019 and a Doctor of Philosophy (Ph.D.) in the spring of 2020. Part of his graduate

studies was graciously funded by the E Bayard Halsted Scholarship.

Kevin has been advised throughout his Ph.D. by James L. Meriam Distinguished

Professor of Engineering Lawrence Carin. His primary research interests have been

in deep learning, including computer vision, natural language processing, continual

learning, and representation learning. Throughout his Ph.D., he has also been inter-

ested in teaching, acting as an instructor for four Duke Machine Learning Schools,

Duke University’s +DataScience program, and the Duke Introduction to Machine

Learning Coursera.

128

