
Few-shot Learning with Noisy Labels

Kevin J Liang1 Samrudhdhi B. Rangrej2 Vladan Petrovic1 Tal Hassner1
1Facebook AI Research 2McGill University

kevinjliang@fb.com

Abstract

Few-shot learning (FSL) methods typically assume clean
support sets with accurately labeled samples when training
on novel classes. This assumption can often be unrealistic:
support sets, no matter how small, can still include misla-
beled samples. Robustness to label noise is therefore es-
sential for FSL methods to be practical, but this problem
surprisingly remains largely unexplored. To address misla-
beled samples in FSL settings, we make several technical
contributions. (1) We offer simple, yet effective, feature ag-
gregation methods, improving the prototypes used by Pro-
toNet, a popular FSL technique. (2) We describe a novel
Transformer model for Noisy Few-Shot Learning (TraNFS).
TraNFS leverages a transformer’s attention mechanism to
weigh mislabeled versus correct samples. (3) Finally, we
extensively test these methods on noisy versions of MiniIm-
ageNet and TieredImageNet. Our results show that TraNFS
is on-par with leading FSL methods on clean support sets,
yet outperforms them, by far, in the presence of label noise.

1. Introduction
Modern few-shot learning (FSL) methods aim to learn

classifiers for novel classes from only a handful of exam-
ples. These methods, however, generally assume that the
few support set samples used for training were carefully se-
lected to represent their class. Unfortunately, real-world set-
tings rarely offer such guarantees. In fact, even carefully an-
notated and curated datasets often contain mislabeled sam-
ples [9, 34, 39, 51, 60], due to automated weakly supervised
annotation, ambiguity, or even human error.

Whereas there are plenty of methods designed for learn-
ing with noise in many-shot supervised settings [1, 20, 22,
28, 37, 57], noise in few-shot settings remains largely unex-
plored. This dearth is surprising considering the utility of
FSL methods in settings where human supervision cannot
easily be provided: e.g. in fully automated systems which
learn many novel classes [12,23,49,63,64], making human
curation of the labels of every support set, unrealistic.

Fig. 1 shows the challenge of learning from few, possibly

Figure 1. Few-shot learning with mislabeled samples. A 5-shot,
5-way support set of MiniImageNet [54] images. Rows show sup-
port set samples of each novel class. Two samples in each row
were mislabeled by symmetric label flips (Sec. 6.1). Can you spot
which ones? See Appx. A for answers and more examples.

mislabeled, examples. It presents a sample 5-shot, 5-way
support set from MiniImageNet [54]. Each row includes the
support set training images of one of the five classes. Two
of the samples in each row are mislabeled with symmet-
ric label noise (Sec. 6.1). With so few examples, spotting
mislabeled images can be difficult, even for humans with
considerable prior knowledge, which FSL methods lack.

As we later demonstrate empirically, FSL methods are
especially vulnerable to such label noise. When training
from few samples, each sample represents a significant con-
tribution to the final decision boundary. Thus, even a sin-
gle noisy example can be destructive to the model’s accu-
racy. We illustrate this observation in Fig. 2, which reports
the performance of ProtoNet [46], a popular FSL method,
on MiniImageNet with noisy labels. ProtoNet averages the
convolutional features of each class’s support set into class
prototypes. Queries are then classified by the class of their
nearest neighbor prototype. Fig. 2 shows the effect of in-
creasing the number of mislabeled samples, compared with
a model trained after mislabeled samples were removed

1

(i.e., smaller, but cleaner, support sets). The widening gap
between the two curves reflects the degradation of accuracy
when mislabeled samples are not accounted for.

We address the vulnerability of FSL methods to label
noise by making a number of technical innovations. We
begin by exploring simple, yet effective alternatives to the
design of ProtoNet [46]. Specifically, we replace the mean
operator, used by ProtoNet for aggregating support set fea-
tures, with more robust methods. We evaluate an un-
weighted option, the median, and options which weigh sup-
port set samples based on feature similarities. We show that
these changes already improve robustness to label noise.

We then introduce our Transformer model for Noisy
Few-Shot Learning (TraNFS). Unlike previous methods,
TraNFS learns to aggregate support samples into class rep-
resentations. The transformer architecture offers a natural
means for processing variable numbers of shots and ways
with permutation invariance. Robustness to label noise is
achieved by leveraging a modified version of the trans-
former’s self-attention mechanism [53]. This modified self-
attention used by TraNFS compares support set samples and
downweights samples considered likely to be mislabeled.

We test our proposed methods extensively on versions
of MiniImageNet [54] and TieredImageNet [44] with three
methods of adding label noise. Our results show that the
proposed TraNFS (and even the simpler modifications of
ProtoNet) surpass popular FSL methods by wide margins
in the presence of label noise, while offering comparable
performance in the absence of label noise.

To summarize, we make the following contributions.
• We propose median and similarity weighting as simple

yet effective substitutes to ProtoNet’s mean prototypes.
• We present TraNFS, a novel transformer model

adapted to FSL with noisy labels.
• We extensively benchmark many popular FSL meth-

ods on three types of support set noise pollution: sym-
metric, paired, and outlier.

Our code can be found at https://github.com/
facebookresearch/noisy_few_shot.

2. Related work
Few-shot learning. The field of FSL methods is vast; we
refer to surveys for comprehensive overviews [7, 58].

Metric-based methods classify query samples based on
their similarity to each class’s support examples, learning a
transferable embedding space for which such comparisons
can be made. Metrics such as cosine similarity [54], Eu-
clidean distance [46], Mahalanobis distance [6], and Earth
Mover’s Distance (EMD) [66] have been shown to be ef-
fective. RelationNet [47] and Satorras et al. [45] used con-
volutional and graph neural networks, respectively, to learn
a similarity metric. TADAM [40], FEAT [62], and TAFE-
Net [56] proposed task-specific adaptation of embeddings.

Figure 2. Number of mislabeled samples versus few-shot learn-
ing accuracy. Accuracy for 10-shot, 5-way classification on Mini-
ImageNet [54] reported for a vanilla ProtoNet [46]. The animals
represent support set embeddings, with the mean prototype (star)
being pulled out of the clean class (dog) distribution with increas-
ing mislabeled samples. Blue: Accuracy if mislabeled samples are
known and ignored. Red: Accuracy when using full support sets
without removing mislabeled samples. The gap between these two
curves reflects the vulnerability of few-shot learning to label noise.

CrossTransformers [16] used attention for spatially-aware
similarity between local features.

Optimization-based methods fine-tune model parameters
on few support examples. MAML [2, 17] learned model
parameter initializations that allow fast fine-tuning on few
samples. REPTILE [38] simplified MAML with a first-
order formulation. MetaNet [36] introduced fast and slow
weights for fast parameterization and rapid generalization.
Bertinetto et al. [8] and MetaOptNet [26] presented closed
form solutions and differentiable solvers for task-dependent
Ridge Regression, Logistic Regression (LR), and Support
Vector Machines (SVMs). Tian et al. [48] showed learn-
ing of generalizable feature embeddings used to train linear
classifiers on novel tasks.

Noisy labels and outliers. Methods for learning noise tran-
sition matrices are common [31, 61, 67]. Estimating a noise
transition matrix from a handful of potentially mislabeled
samples, however, is an ill-posed problem. Other meth-
ods [20, 22, 65] leverage deep neural networks’ tendency
to learn easier (and thus likely correctly labeled) samples
first [4,50] to select reliable samples to learn from, but such
behavior cannot be relied upon when only a few samples
are available. Deep out-of-distribution (OOD) detection is
also extensively explored [10, 15, 43, 55], but these meth-
ods typically focus on identifying test-time outliers that are
out-of-distribution relative to the training set. In FSL, dis-
joint base and novel sets mean that all meta-test samples
are considered OOD, including correctly labeled support set
samples. Finally, there are several works that take a meta-
learning approach to learning noisy labels [27, 59, 68], but
these methods typically assume known label spaces with
abundant data (i.e. many-shots), rather than our few-shot

2

https://github.com/facebookresearch/noisy_few_shot
https://github.com/facebookresearch/noisy_few_shot

setting. With only few training samples, these methods fail.
Robust FSL. With few previous works, noisy labels have
largely been ignored by FSL methods. RNNP [35] com-
bined data augmentation with repeated applications of k-
means to produce refined prototypes, but such unsupervised
clustering implicitly assumes that noisy data is from one of
the support set classes. RapNets [33] proposed a BiLSTM-
based attentive module to overcome representation or label
noise. Alternatively, RW-MAML [25] learned to weigh sup-
port samples by extending MAML to bi-bi-level optimiza-
tion, but it considers the less realistic setting of mixing in
OOD tasks during metatraining rather than noisy few-shot
meta-test. Finally, robustness of meta-learners to adversar-
ial attacks have also been considered [19].

3. Preliminaries
FSL classification tasks are often referred to as K-shot

N -way, where N is the number of classes being learned and
K is the number of labeled samples per class to learn from.
These KN samples S = {x(1)

1 , x
(1)
2 , ..., x

(N)
K−1, x

(N)
K } are

often referred to as the support set. After training, un-
labeled queries are classified into one of these N classes.
To produce an effective classifier of novel classes Cn from
few samples, FSL models typically use knowledge trans-
fer, leveraging a dataset of base classes Cb with ample
labeled data. It is commonly assumed that the classes in
Cn are unknown in advance and thus absent from Cb (i.e.
Cb ∩ Cn = ∅). Recent FSL methods often adopt a meta-
learning paradigm, simulating the desired inference-time
behavior by meta-training the model with many episodes of
K-shot, N -way tasks, optimizing for accuracy on Q query
samples from each of the episode’s N classes.
ProtoNets. One such relevant FSL method is Prototypical
Networks (ProtoNets) [46]. ProtoNets use a convolutional
feature extractor F to convert each sample in the support
set to an embedding h

(c)
i = F(x

(c)
i) ∈ RD. These embed-

dings are then aggregated into N class prototypes p(c) using
a simple mean of the embeddings for each class c:

p(c) =
1

K

∑
i

F(x
(c)
i). (1)

A query sample, xq , is then classified based on the nearest
prototype in embedding space:

y = argmin
c

d(F(xq), p
(c)). (2)

Despite its simplicity, ProtoNets remain a strong baseline,
and its easy implementation makes it compelling for real-
world use cases at scale. Using mean to aggregate embed-
dings, however, implies sensitivity to mislabeled samples,
especially when only few samples are provided. Indeed,
as we show in Fig. 2, incorrectly labeled samples can easily

degrade accuracy of the resulting classifiers. This is a symp-
tom of the prototypes being pulled away from the class’s
true (unknown) mean by mislabeled samples.

4. Static alternatives to the mean
Using mean as proposed by ProtoNet [46] to aggregate

features is not the only way to combine embeddings into
prototypes: other aggregation methods may be better suited
when mislabeled samples are expected. We begin by ex-
ploring simple alternatives to the mean, intended to make
prototypes more robust to mislabeled samples while main-
taining accuracy if all labels are correct.

4.1. Spatial median prototypes
The median is a natural alternative to the mean in noisy

settings. While order statistics like the median are well de-
fined for scalars, this is not the case for vectors. For scalars,
there is a connection between various distribution statistics
(e.g. mean, median, mode) and minimization of the appro-
priate loss functions [5]. For example, empirical mean min-
imizes total squared error between the mean and values in
the set. Similarly, empirical median minimizes total abso-
lute error between the median and the set, so finding a me-
dian is equivalent to minimizing the total absolute error.

This minimization generalizes well to higher dimen-
sional spaces. We thus define a cost function to be the sum
of distances to embedding vectors h

(c)
i , i ∈ {1, 2, ...,K},

in the set for each class, c, and find the median vector p(c)

minimizing this cost. For brevity, we drop the class index
c in derivations that follow. To make the loss differentiable
at all points, we work with a smooth version of the loss,
usually referred to as the pseudo-Huber loss:

L(p) =
K∑
i=1

(√
||p− hi||22 + ϵ2 − ϵ

)
, (3)

where K is the number of vectors in the set, || · ||2 is an L2

vector norm, and ϵ is a small constant.
No closed-form solution for this minimization problem

exists, so we use Newton’s method for an iterative solution:

p(t+ 1) = p(t)−H−1(p(t)) · ∇L(p(t)). (4)

We find the gradient, ∇L(p), and the Hessian matrix, H(p),
using matrix calculus with numerator layout as,

∇L(p) =
K∑
i=1

p− hi√
||p− hi||22 + ϵ2

, (5)

H(p) =

(
K∑
i=1

1√
||p− hi||22 + ϵ2

)
ID×D − UUT , (6)

3

where D is the dimension of the vector space, ID×D is the
identity matrix, and U = [u1, u2, . . . , uK] is a D ×K ma-
trix formed by stacking vectors ui = p−hi

(||p−hi||22+ϵ2)
3
4

. As

an approximation, we can neglect the second, non-diagonal
term in the Hessian, in which case the iteration becomes:

p(t+ 1) = p(t)−

∑K
i=1

p(t)−hi√
||p(t)−hi||22+ϵ2∑K

i=1
1√

||p(t)−hi||22+ϵ2

. (7)

Note that the choice of pseudo-Huber loss with a small con-
stant ϵ avoids division by zero even when the median esti-
mate falls exactly at one of the vectors in the support set.
See Appx. B for additional comments on complexity.

4.2. Similarity weighted prototypes
ProtoNet-style mean aggregation uniformly weighs all

shots of a class’s support set. A clear extension to this
scheme is a non-uniform weighting which suppresses out-
liers and amplifies clean samples. Of course, if we knew
which samples were mislabeled, we could remove them
from the support set, but this information is typically un-
available. Instead, we can try to identify mislabeled samples
based on how the support set is arranged in feature space.

Specifically, we assume that a well-trained feature ex-
tractor F embeds correctly labeled samples close to one
another [24], thus on average being closer in the induced
metric space than any mislabeled samples. This intuition
implies that the subset of correctly labeled samples is larger
than any subset of mislabeled samples from a single, un-
related class. This assumption, however, is typical to many
robust estimators, including, e.g., the Random Sample Con-
sensus (RANSAC) [18]. Building on this assumption, we
offer the following similarity measures.
Squared Euclidean distance. This distance is the same
one minimized by ProtoNets and thus a natural choice for
measuring distances when attempting to identify mislabel
samples. We compute the similarity score as:

a
(c)
i = − 1

K − 1

∑
i ̸=j

||h(c)
i − h

(c)
j ||22. (8)

Lower distance implies being closer to other support sam-
ples, so we negate the average distance for the final score.
Absolute distance. The L2 norm can heavily penalize large
distances in few feature dimensions: a large difference in
only few dimensions may result in a large distance between
the features, even if they share similar values in all other
dimensions. We thus also consider L1:

a
(c)
i = − 1

K − 1

∑
i ̸=j

|h(c)
i − h

(c)
j |. (9)

As with the Euclidean distance, we use a factor of −1 so
that lower distances produce higher scores.

Cosine similarity. While not a proper distance metric, the
cosine angle between two features is a common measure of
feature similarity in the few-shot literature [11].

a
(c)
i =

1

K − 1

∑
i ̸=j

h
(c)
i · h(c)

j

||h(c)
i || ||h(c)

j ||
. (10)

As the inputs are normalized, cosine similarity is less sensi-
tive to the magnitude of the embeddings.
Aggregating features with weighted similarity. Once we
obtain the average distance of each feature to others in the
same support set, using one of the scores above, we produce
an aggregated prototype by weighting the support samples
using these scores, normalizing the result with a softmax.

w
(c)
i =

exp(a
(c)
i /T)∑

j exp(a
(c)
j /T)

, (11)

p(c) =
∑
i

w
(c)
i F(x

(c)
i), (12)

where T is a temperature term controlling the diffuseness
of the softmax. As T → 0, this method picks the support
sample with minimum distance to the other samples as a
class prototype, while as T → ∞, this reduces to the mean
(i.e. ProtoNets [46]). We choose soft-weighting of support
samples, rather than top-k selection or a hard threshold, as
the latter two require either knowing the number of noisy
samples or threshold tuning, which may vary depending on
the class or support sample distribution.

5. Learning a prototype aggregator
The aggregation methods discussed in Sec. 4, weighted

or otherwise, are hard coded: They do not adjust to dif-
ferences in support set feature distributions. We hypoth-
esize that a learned mechanism that compares support set
embeddings for similarity and then refines them, can poten-
tially outperform these static methods. Crucially, in typical
FSL settings, the number and order of support samples and
classes are arbitrary. Thus, any learned alternative to the
methods of Sec. 4 must process arbitrary numbers of shots
or ways while remaining permutationally invariant to both.

5.1. A transformer model for noisy FSL
Given these requirements, we propose a Transformer

model for Noisy Few-Shot Learning (TraNFS) (Fig. 3).
Transformers are designed to process sequences of arbitrary
length while offering permutation invariance. Importantly,
we note that a transformer’s self-attention mechanism [53]
can be leveraged to compute similarities between support
set samples and naturally weigh them when aggregating
them into prototypes. To this end, we concatenate the con-
volutional features of a support set’s samples to form an in-

4

Figure 3. Visualization of our proposed TraNFS architecture, for a 3-shot 3-way support set example input / output sequence.

put sequence h = [h
(1)
1 , h

(1)
2 , ..., h

(N)
K−1, h

(N)
K] to the trans-

former, T . We then make the following adaptations to the
transformer to enable it to process a typical FSL support set.
Class token. Partly inspired by BERT [14], we use a set
of classification tokens CLS(c), c ∈ {1, ..., N} to denote the
positions representing the prototype for each class and con-
catenate [CLS(1), ...,CLS(N)] to the support set embedding
sequence h. By taking the output at the position of CLS(c)

to be the prototype p(c) for class c, we motivate the trans-
former to learn to aggregate the information in all support
set samples into this position. There are multiple choices
for instantiating CLS(c), including as a random constant, the
mean of the support set embeddings for class c (i.e. a mean
prototype), or a learnable embedding. We report compar-
isons of these variations in the supplemental material.
Positional encoding. Shot and class order are both typ-
ically arbitrary in FSL and should therefore not be en-
coded. Still, we require some means of informing the trans-
former the class identity of each support sample. Vaswani
et al. [53] utilized a sinusoidal positional encoding added
to the input sequence to indicate word order. We repurpose
this mechanism and use it to encode the class c associated
with each position in the input sequence. Specifically, we
create N D-dimensional embeddings corresponding to spe-
cial tokens POS(c), c ∈ {1, ..., N} and add each POS(c) to
all support sample embeddings h

(c)
i and the class tokens

CLS(c), as seen in Fig. 3. With the positional embeddings
added to the input sequence, the transformer can learn to at-
tend to the positional encoding to associate support set em-
beddings and the prototype position of each class together.

5.2. Optimization
We meta-train TraNFS to minimize the standard Pro-

toNet loss. Logits are computed as the negative distance
d between prototypes predicted by the model at the CLS
token positions and the embedded query sample F(xq):

Lxent = −
N∑
c=1

yq · log

(
exp

(
−d
(
p(c),F(xq)

))∑
c′ exp

(
−d
(
p(c′),F(xq)

)))
(13)

where · is the dot product and yq is the one-hot ground truth
label of query xq .

When meta-training TraNFS, we found it essential to
expose the model to support sets with noisy samples
(Sec. 6.4). We do this by artificially introducing label noise
to the support set, using label o(c)i ∈ {0, 1} to track the posi-
tions of the noisy samples. This step ensures that the trans-
former learns a noise rejection mechanism. Without noisy
samples, the transformer is not motivated to learn anything
beyond recreating ProtoNet by averaging support samples.
Clean prototype loss. Besides optimizing the position
of predicted prototypes relative to the meta-training query
samples, we also encourage the predicted prototype for each
class to be close to a clean prototype, p̂(c), aggregated from
correctly labeled samples in the support set:

p̂(c) =
1

K −
∑

i o
(c)
i

∑
i

1[o
(c)
i = 0]F(x

(c)
i), (14)

Lclean =
1

N

∑
c

||p(c) − p̂(c)||22. (15)

We choose mean squared error here, but other alternatives
such as negative cosine similarity are also viable.
Binary outlier classification loss. The ProtoNet and clean
prototype losses described above both implicitly encourage
identification of noisy samples. We found it helpful to also
explicitly train the model to classify support set samples as
either mislabeled or not.

We instantiate the binary classifier as a fully connected
layer B applied to the transformer’s output at positions cor-
responding to the support set samples. We share weights for
B across all such positions, with loss term:

Lbin = − 1

KN

∑
i,c

o
(c)
i log σ(B(h′(c)

i)), (16)

+ (1− o
(c)
i) log

(
1− σ(B(h′(c)

i))
)
,

where σ is the sigmoid function and h′(c)
i is the transformer

output corresponding to h
(c)
i .

Our final optimization objective combines the three
losses described above:

L = Lxent + λcLclean + λbLbin, (17)

5

Table 1. Few-shot with symmetric label swap noise. 5-way 5-shot Acc. ± 95% CI on MiniImageNet [54], TieredImageNet [44]. Our
TraNSF is comparable to existing methods at 0% noise, with a growing gap in its favor as noise levels increase. Best viewed in color.

Model \ Noise Proportion 0% 20% 40% 60%

Oracle 68.18 ± 0.16 71.42 ± 0.18 66.08 ± 0.17 69.19 ± 0.19 62.60 ± 0.17 66.14 ± 0.20 56.89 ± 0.18 60.39 ± 0.21

B
as

el
in

es

Nearest k = 1 55.91 ± 0.17 58.81 ± 0.20 47.27 ± 0.18 49.48 ± 0.19 38.68 ± 0.18 40.25 ± 0.19 29.20 ± 0.16 29.84 ± 0.17
Nearest k = 3 55.29 ± 0.18 58.44 ± 0.20 48.43 ± 0.17 51.11 ± 0.19 39.14 ± 0.17 41.09 ± 0.18 29.66 ± 0.15 30.69 ± 0.15
Nearest k = 5 56.15 ± 0.18 59.22 ± 0.20 50.92 ± 0.17 53.75 ± 0.19 42.12 ± 0.17 44.14 ± 0.19 32.62 ± 0.16 33.99 ± 0.17

Linear Classifier 66.65 ± 0.16 69.89 ± 0.18 58.41 ± 0.17 61.96 ± 0.19 47.23 ± 0.17 50.08 ± 0.19 34.04 ± 0.16 35.75 ± 0.17
Matching Networks [54] 62.16 ± 0.17 64.92 ± 0.19 56.21 ± 0.18 59.20 ± 0.20 46.18 ± 0.18 49.12 ± 0.20 34.66 ± 0.18 36.80 ± 0.19

MAML [17] 63.25 ± 0.18 63.96 ± 0.19 53.28 ± 0.18 54.62 ± 0.19 42.58 ± 0.18 43.71 ± 0.19 31.01 ± 0.17 31.74 ± 0.17
Vanilla ProtoNet [46] 68.27 ± 0.16 71.36 ± 0.18 62.43 ± 0.17 66.15 ± 0.19 51.41 ± 0.19 55.05 ± 0.21 38.33 ± 0.19 40.61 ± 0.21

Baseline++ [11] 67.91 ± 0.16 71.24 ± 0.18 61.87 ± 0.17 65.58 ± 0.19 51.87 ± 0.18 55.00 ± 0.20 38.36 ± 0.19 40.19 ± 0.20
RNNP [35] 68.38 ± 0.16 71.36 ± 0.18 62.43 ± 0.17 65.95 ± 0.19 51.62 ± 0.19 54.86 ± 0.21 38.45 ± 0.19 40.63 ± 0.21

O
ur

s

Median 68.45 ± 0.16 71.28 ± 0.18 63.19 ± 0.17 66.65 ± 0.20 51.86 ± 0.19 55.09 ± 0.21 39.32 ± 0.19 41.94 ± 0.21
Absolute 68.24 ± 0.16 71.27 ± 0.18 63.46 ± 0.17 66.87 ± 0.20 52.06 ± 0.20 55.26 ± 0.22 39.78 ± 0.20 42.54 ± 0.22
Euclidean 68.32 ± 0.16 71.48 ± 0.18 63.02 ± 0.17 66.69 ± 0.19 52.09 ± 0.19 55.62 ± 0.21 39.33 ± 0.20 41.75 ± 0.21

Cosine 68.20 ± 0.16 70.59 ± 0.18 63.46 ± 0.17 66.62 ± 0.20 52.42 ± 0.20 55.78 ± 0.22 39.90 ± 0.20 42.56 ± 0.22

TraNFS-2 68.29 ± 0.17 70.92 ± 0.19 64.74 ± 0.18 67.33 ± 0.21 56.14 ± 0.21 58.76 ± 0.23 42.24 ± 0.23 44.17 ± 0.25
TraNFS-3 68.53 ± 0.17 71.17 ± 0.19 65.08 ± 0.18 67.67 ± 0.20 56.65 ± 0.21 58.88 ± 0.23 42.60 ± 0.24 44.21 ± 0.25

where λc and λb are weighting terms for the clean prototype
and binary outlier classification losses, respectively.

6. Experiments
6.1. Experimental setup
Datasets. We experiment on two common FSL datasets:
MiniImageNet [54] and TieredImageNet [44]. Both include
84 × 84 pixel images. MiniImageNet contains 64, 16, and
20 classes for train, validation, and test, with 60K images in
total. TieredImageNet consists of 351, 97, and 160 classes
for train, validation, and test, with ∼0.78M images in total.
Label noise types. We explore three forms of label noise:

• Symmetric label swap noise [52] draws mislabeled
samples, uniformly at random, from the other N − 1
classes of the episode, with the restriction that a noisy
class does not tie or outnumber the original clean class.

• Paired label swap noise [20] is more challenging: we
always draw mislabeled samples from the same class
by assigning each class with a noisy class counter-
part, simulating real-world tendencies to confuse cer-
tain classes with others during labeling. We randomly
generate these assignments in each episode as a de-
rangement, to prevent models from learning these pair-
ings across episodes.

• Outlier noise is sampled from classes outside the N -
way episode. We use 600 images from each of the
350 ImageNet classes unincluded from MiniImageNet
and TieredImageNet. We split these classes in half for
meta-training and meta-test, to ensure that meta-test
episode outliers represent previously unseen classes.

The amount of noise in a support set is specified as the
percent of the total number of shots. We only consider set-
tings where the clean class can reasonably be identified.
Thus, for example, we only consider paired label swap noise
under 50%, as at 50% noise and above, the clean class is am-
biguous or a minority. We also exclude paired label swap

Table 2. Few-shot with paired label swap noise. 5-way 5-shot
Acc. ± 95% CI on MiniImageNet [54], TieredImageNet [44].

Model \ Noise Proportion 40%

Oracle 62.60 ± 0.17 66.14 ± 0.20

B
as

el
in

es

Nearest k = 1 37.97 ± 0.17 39.40 ± 0.18
Nearest k = 3 37.84 ± 0.16 39.70 ± 0.18
Nearest k = 5 40.39 ± 0.17 42.17 ± 0.18

Linear Classifier 44.49 ± 0.17 46.70 ± 0.18
Matching Networks [54] 43.53 ± 0.17 46.13 ± 0.19

MAML [17] 40.67 ± 0.18 41.66 ± 0.18
Vanilla ProtoNet [46] 47.77 ± 0.19 50.85 ± 0.21

Baseline++ [11] 47.82 ± 0.18 50.69 ± 0.20
RNNP [35] 47.88 ± 0.19 50.91 ± 0.20

O
ur

s

Median 48.81 ± 0.19 51.91 ± 0.21
Absolute 49.38 ± 0.20 52.40 ± 0.22
Euclidean 48.67 ± 0.19 51.90 ± 0.21

Cosine 49.40 ± 0.19 52.72 ± 0.22

TraNFS-2 50.63 ± 0.22 54.82 ± 0.24
TraNFS-3 53.96 ± 0.23 55.12 ± 0.24

settings that are identical to the corresponding symmetric
label swap setting (e.g. 20% for 5-shot 5-way).

Model. Our models are implemented in PyTorch [41], us-
ing learn2learn [3] as a starting point. We set T = 25
for similarity weighted prototypes with squared euclidean
and absolute distances and T = 0.2 for cosine similarity.
For TraNFS, we instantiate the transformer T using 2 or
3-layers with eight heads, learnable positional embeddings
POS(c), and random constant class tokens CLS(c). We apply
an orthogonally initialized pair of down-projection and up-
projection weight matrices before and after the transformer,
reducing the transformer’s dimensionality to 128. We found
these orthogonal projections stabilize training [42], while
also greatly reducing the number of transformer parameters.
Finally, we set the hyperparameters of Eq. (17) as λb = 0.5
and λc = 5. See Appx. E for hyperparameter sweeps. Note
that while the transformer must be meta-trained and used to
generate robust prototypes during meta-test, it is not used
during inference on individual query samples. Hence, the
number of parameters and computation cost during infer-

6

Table 3. Few-shot with outlier noise. 5-way 5-shot Acc. ± 95% CI on MiniImageNet [54], TieredImageNet [44]. Our TraNSF is
comparable to existing methods at 0% or low noise, with a growing gap in its favor as noise levels increase. Best viewed in color.

Model \ Noise Proportion 0% 20% 40% 60%

Oracle 68.18 ± 0.16 71.42 ± 0.18 66.08 ± 0.17 69.19 ± 0.19 62.60 ± 0.17 66.14 ± 0.20 56.89 ± 0.18 60.39 ± 0.21

B
as

el
in

es

Nearest k = 1 55.87 ± 0.18 58.89 ± 0.20 50.90 ± 0.18 54.57 ± 0.20 45.28 ± 0.18 49.45 ± 0.20 38.75 ± 0.18 43.20 ± 0.19
Nearest k = 3 55.28 ± 0.18 58.38 ± 0.20 50.53 ± 0.17 53.98 ± 0.20 44.40 ± 0.17 48.06 ± 0.19 37.03 ± 0.16 40.11 ± 0.18
Nearest k = 5 56.34 ± 0.17 59.25 ± 0.19 52.32 ± 0.17 55.30 ± 0.19 46.49 ± 0.17 49.34 ± 0.19 38.44 ± 0.16 40.56 ± 0.17

Linear Classifier 66.70 ± 0.16 69.60 ± 0.18 61.13 ± 0.17 64.58 ± 0.19 53.86 ± 0.18 57.57 ± 0.20 44.05 ± 0.18 47.90 ± 0.20
Matching Networks [54] 62.05 ± 0.17 64.99 ± 0.19 57.69 ± 0.18 60.74 ± 0.20 51.32 ± 0.19 54.28 ± 0.21 42.39 ± 0.19 44.93 ± 0.20

MAML [17] 63.21 ± 0.18 63.90 ± 0.19 57.35 ± 0.19 58.14 ± 0.19 50.00 ± 0.19 51.11 ± 0.20 40.90 ± 0.17 42.01 ± 0.20
Vanilla ProtoNet [46] 68.18 ± 0.16 71.42 ± 0.18 63.92 ± 0.17 67.58 ± 0.19 57.07 ± 0.18 60.97 ± 0.20 46.99 ± 0.20 50.29 ± 0.21

Baseline++ [11] 67.85 ± 0.16 71.29 ± 0.18 63.49 ± 0.17 67.07 ± 0.19 56.84 ± 0.18 60.64 ± 0.20 46.96 ± 0.19 50.07 ± 0.21
RNNP [35] 68.17 ± 0.16 71.28 ± 0.18 63.80 ± 0.17 67.29 ± 0.19 56.97 ± 0.18 60.83 ± 0.20 46.92 ± 0.20 50.09 ± 0.21

O
ur

s

Median 68.37 ± 0.16 71.28 ± 0.18 64.46 ± 0.17 67.79 ± 0.19 57.85 ± 0.18 61.63 ± 0.21 47.19 ± 0.20 50.63 ± 0.21
Absolute 68.13 ± 0.16 71.17 ± 0.18 64.69 ± 0.17 68.00 ± 0.19 58.30 ± 0.18 61.98 ± 0.21 47.39 ± 0.20 50.59 ± 0.22
Euclidean 68.51 ± 0.16 71.28 ± 0.18 64.57 ± 0.17 67.89 ± 0.19 58.01 ± 0.18 61.61 ± 0.20 47.25 ± 0.20 50.49 ± 0.21

Cosine 68.20 ± 0.16 70.79 ± 0.18 64.78 ± 0.17 67.94 ± 0.19 58.36 ± 0.18 62.37 ± 0.21 47.34 ± 0.20 51.12 ± 0.22

TraNFS-2 67.76 ± 0.17 70.83 ± 0.19 64.47 ± 0.19 67.52 ± 0.21 58.29 ± 0.20 61.76 ± 0.22 47.37 ± 0.23 51.40 ± 0.23
TraNFS-3 68.11 ± 0.17 71.13 ± 0.19 64.96 ± 0.18 67.93 ± 0.20 59.03 ± 0.20 62.39 ± 0.22 47.69 ± 0.22 51.82 ± 0.23

ence is similar to methods like ProtoNet [46].
Training and testing. To isolate the effect of the method
from the learned features, we use the same, frozen, 4-layer
convolutional backbone [54], trained with the ProtoNet ob-
jective, for all models except MAML [17]. We chose this
simple backbone to emphasize the method, not the feature
extractor. The backbone is trained with AdamW [32], with
weight decay of 0.01, initial learning rate 1 × 10−3, and
learning rate decay of ×0.7 every 10K episodes for 100K
episodes for MiniImageNet, and every 25K episodes for
250K episodes for TieredImageNet. Meta-validation is used
for accuracy model selection. Our TraNFS is similarly opti-
mized, with initial learning rate 5× 10−4, decayed after ev-
ery 25K episodes, for 200K episodes. We use random hori-
zontal flips, resized crops, and color jitters as data augmen-
tations for all models. Finally, each meta-train and meta-test
episode has 15 queries. We report mean accuracy and 95%
confidence interval for 10K meta-test episodes. All experi-
ments are run on a single Nvidia V100 GPU.

6.2. Noisy few-shot results
We compare all our proposed methods for noisy few-

shot learning–Median, Absolute, Euclidean, Cosine, and
TraNFS–with several baselines (see Appx. D for details on
these baselines). We report results for 5-way and 5-shot1 on
MiniImageNet and TieredImageNet using symmetric noise
(Table 1), paired noise (Table 2), and outlier noise (Table 3).
We further report results for an Oracle: a ProtoNet [46] that
knows which samples are mislabeled and ignores them by
removing them from each support set, thereby representing
perfect noise rejection (the blue line in Fig. 2).

Unsurprisingly, noisy labels negatively affect all meth-
ods. Our proposed median and similarity weighting alter-
natives to ProtoNet’s mean suffer less than the baselines,
on all three noise types. This is expected, as their ag-
gregation methods are less sensitive to outliers. Further-

1See Appx. C for 3-shot and 10-shot experiments.

Table 4. Various amounts of injected meta-training artificial
noise. TraNFS-3 5-way 5-shot Acc. ± 95% CI on MiniImageNet.
0% 20% 40% 60% 0% 20% 40% 60%

✓ 69.10 ± 0.16 63.56 ± 0.18 52.85 ± 0.19 39.19 ± 0.21
✓ 68.67 ± 0.17 64.85 ± 0.18 55.76 ± 0.21 41.73 ± 0.23

✓ 67.37 ± 0.17 63.97 ± 0.19 55.65 ± 0.21 41.63 ± 0.24
✓ 50.40 ± 0.19 48.26 ± 0.19 43.11 ± 0.21 35.44 ± 0.23

✓ ✓ 68.53 ± 0.17 65.08 ± 0.18 56.65 ± 0.21 42.60 ± 0.24
✓ ✓ ✓ 68.90 ± 0.17 65.08 ± 0.18 56.73 ± 0.21 42.69 ± 0.24

✓ ✓ ✓ 66.92 ± 0.17 63.52 ± 0.19 54.98 ± 0.22 42.01 ± 0.24
✓ ✓ ✓ ✓ 67.64 ± 0.17 63.83 ± 0.18 54.81 ± 0.21 41.33 ± 0.24

more, our transformer-based TraNFS is clearly superior to
its baselines. For example, consider the challenging 5-way
5-shot setting on MiniImageNet with 40% paired label swap
noise. Our TraNFS provides a 6.19% absolute improvement
in accuracy over ProtoNet, representing a significant rela-
tive drop of 41.7% in error, compared with the Oracle. As
explained in Sec. 6.3, this gain is due to the transformer’s
self-attention learning to compare support set examples and
suppress samples suspected of being mislabeled.

Comparing noise types, we find that, as expected, FSL
methods are more vulnerable to paired label swap than sym-
metric noise. Outlier noise has the least impact on model
performance, with three outlier samples in a 5-way 5-shot
test reducing accuracy similarly to two label swap samples.
We reason that this is due to the direction in which these
noisy samples push the model’s decision boundary: label
swapped samples pull the decision boundary closer to the
features of other classes in the N -way classification task;
for paired label swaps, this effort is coordinated across noisy
samples, amplifying the effect. In contrast, outlier samples
have lower probability of being arranged in regions of fea-
ture space that interfere with the N -way classification.

6.3. Visualizing transformer attention to noise
To understand how our proposed transformer model sup-

presses noisy samples, we visualize the self-attention from
selected attention heads at each of its layers. The attention
maps for a 5-way 5-shot test episode of MiniImageNet with

7

(a) Layer 1 (b) Layer 2 (c) Layer 3

Figure 4. Attention maps from selected TraNFS-3 self-attention heads. 5-way 5-shot MiniImageNet, 40% symmetric noise. The first
five rows of each map correspond to positions of CLS tokens, which produce the output prototypes. True class label of each support sample
overlaid on the final layer’s attention maps. Evidently, later layers assign lower attention to noisy samples, effectively filtering them.

Table 5. Meta-training mean/median prototype models with
noise. 5-way 5-shot Acc. ± 95% CI on MiniImageNet.

Baseline \ Noise Proportion 0% 20% 40% 60%

Mean + Sym (0%, 20%, 40%) 67.89 ± 0.16 62.44 ± 0.18 51.66 ± 0.19 38.53 ± 0.20
Mean + Pair (0%, 20%, 40%) - - 48.05 ± 0.19 -
Mean + Out (0%, 20%, 40%) 66.88 ± 0.16 62.69 ± 0.17 56.00 ± 0.18 45.90 ± 0.19

Median + Sym (0%, 20%, 40%) 67.11 ± 0.16 62.39 ± 0.17 51.70 ± 0.19 39.57 ± 0.20
Median + Pair (0%, 20%, 40%) - - 48.64 ± 0.19 -
Median + Out (0%, 20%, 40%) 67.17 ± 0.16 63.46 ± 0.17 57.01 ± 0.18 46.44 ± 0.20

40% symmetric label swap noise are shown in Fig. 4. From
Fig. 4a, attention at the CLS token positions suggests that
the first layer of the transformer mainly uses positional en-
codings to focus on per-class examples, resulting in a rep-
resentation reminiscent of ProtoNet’s mean.

Subsequent layers are visualized in Fig. 4b-4c. Evi-
dently, the transformer is able to refine its class represen-
tations by decreasing attention to noisy samples, suppress-
ing their influence on the aggregated representations. For
example, our self-attention mechanism correctly learned to
ignore the 2nd and 4th samples of the first class, which are
indeed mislabeled. While this filtering ability is not perfect,
we emphasize that learning class concepts from so few sam-
ples, without any prior concept of the class, is a challenging
task (see Fig. 1); ImageNet contains enough intra-class vari-
ation and label ambiguity that identifying mislabeled sam-
ples can be challenging even for humans, who have the ad-
vantage of conceptual priors of the ImageNet classes.

6.4. Ablations: Meta-training noise proportion
To test the influence of adding training noise,2 we meta-

train a 3-layer TraNFS model on 5-shot, 5-way MiniIma-
geNet with various amounts of symmetric label swap noise,
synthetically added to meta-training. Table 4 reports these
results, clearly showing a few patterns.

First, training with a single noise percentage boosts per-
formance on that noise level during meta-test. Those mod-
els, however, do not generalize well to other noise levels.
Instead, training on varying noise levels seems to offer the
best results across a range of meta-test support set noise lev-

2See Appx. E for more ablation studies on other design choices.

els. This is important, as the stochastic nature of label noise
means we expect real world support sets to have varying
levels of noise, and it is desirable to handle multiple noise
levels with a single model. In particular, training on support
sets with {0, 20, 40}% appears to achieve the best overall
performance. Finally, we observe that training on extremely
noisy support sets (e.g., 60%) appears counter-productive.
We believe that this is due to a mixture of having a more
challenging task to learn while also diluting learnable infor-
mation of the clean class of each support set.

Synthetically adding noise during meta-training proved
essential for TraNFS. A similar strategy could conceivably
also be applied other methods. As Table 5 shows, however,
this approach was unhelpful. We believe that the absence of
learnable mechanisms for rejecting noise encourages these
baselines to learn strong feature extractors on the highest
quality (i.e., cleanest) data available. Thus, we do not add
artificial noise to our baselines during meta-training.

7. Conclusion
We focus on a key vulnerability of modern FSL methods:

noisy, mislabeled support sets samples. We propose several
technical novelties to mitigate this vulnerability: replacing
the mean aggregator used by ProtoNets with a median or
similarity weighted aggregation. We then present a novel,
transformer-based model designed to learn a dynamic noise
rejection mechanism, leveraging the transformer’s attention
mechanism. Experiments on MiniImageNet and TieredIm-
ageNet under varying types and levels of noise clearly show
the effectiveness of our techniques.

Limitations. As with other FSL methods, we assume a
cleanly labeled meta-train dataset with noisy labels mostly
affecting meta-testing. We believe this is reasonable: col-
lecting meta-train data and meta-training are performed of-
fline, before model deployment, with reasonable control
over both. Sometimes, however, meta-training datasets
can also be noisy. While we introduce noise during meta-
training, our methods assume that the query set is correctly

8

labeled. Queries with noisy labels could cause misleading
gradients. In such cases, ideas from the noisy label litera-
ture [20,22] could offer promising direction for future work.

References
[1] Dana Angluin and Philip Laird. Learning from noisy exam-

ples. Machine Learning, 1988. 1
[2] Antreas Antoniou, Harrison Edwards, and Amos Storkey.

How to train your maml. arXiv preprint arXiv:1810.09502,
2018. 2

[3] Sébastien MR Arnold, Praateek Mahajan, Debajyoti Datta,
Ian Bunner, and Konstantinos Saitas Zarkias. learn2learn:
A library for meta-learning research. arXiv preprint
arXiv:2008.12284, 2020. 6

[4] Devansh Arpit, Stanislaw Jastrzebski, Nicolas Ballas, David
Krueger, Emmanuel Bengio, Maxinder S Kanwal, Tegan
Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio,
et al. A closer look at memorization in deep networks. In
Int. Conf. Mach. Learning., 2017. 2

[5] Jonathan T. Barron. A general and adaptive robust loss func-
tion. In Conf. Comput. Vis. Pattern Recog., 2019. 3

[6] Peyman Bateni, Raghav Goyal, Vaden Masrani, Frank Wood,
and Leonid Sigal. Improved few-shot visual classification. In
Conf. Comput. Vis. Pattern Recog., 2020. 2

[7] Nihar Bendre, Hugo Terashima Marı́n, and Peyman Najafi-
rad. Learning from few samples: A survey. arXiv preprint
arXiv:2007.15484, 2020. 2

[8] Luca Bertinetto, Joao F Henriques, Philip Torr, and An-
drea Vedaldi. Meta-learning with differentiable closed-form
solvers. In Int. Conf. Learn. Represent., 2018. 2

[9] Lucas Beyer, Olivier J Hénaff, Alexander Kolesnikov, Xi-
aohua Zhai, and Aäron van den Oord. Are we done with
imagenet? arXiv preprint arXiv:2006.07159, 2020. 1

[10] Koby Bibas, Meir Feder, and Tal Hassner. Single
layer predictive normalized maximum likelihood for out-of-
distribution detection. In Adv. Neural Inform. Process. Syst.,
2021. 2

[11] Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank
Wang, and Jia-Bin Huang. A closer look at few-shot classi-
fication. arXiv preprint arXiv:1904.04232, 2019. 4, 6, 7, 15,
16

[12] James Davidson, Benjamin Liebald, Junning Liu, Palash
Nandy, Taylor Van Vleet, Ullas Gargi, Sujoy Gupta, Yu He,
Mike Lambert, Blake Livingston, et al. The youtube video
recommendation system. In ACM Conference on Recom-
mender Systems, 2010. 1

[13] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. ImageNet: A large-scale hierarchical im-
age database. In Conf. Comput. Vis. Pattern Recog., 2009.
12

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. In NAACL, 2019. 5

[15] Terrance DeVries and Graham W Taylor. Learning confi-
dence for out-of-distribution detection in neural networks.
arXiv preprint arXiv:1802.04865, 2018. 2

[16] Carl Doersch, Ankush Gupta, and Andrew Zisserman.
Crosstransformers: spatially-aware few-shot transfer. In Adv.
Neural Inform. Process. Syst., 2020. 2

[17] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep networks.
In Int. Conf. Mach. Learning., 2017. 2, 6, 7, 12, 13, 14, 15

[18] Martin A Fischler and Robert C Bolles. Random sample
consensus: a paradigm for model fitting with applications to
image analysis and automated cartography. Communications
of the ACM, 1981. 4

[19] Micah Goldblum, Liam Fowl, and Tom Goldstein. Adver-
sarially robust few-shot learning: A meta-learning approach.
In Adv. Neural Inform. Process. Syst., 2020. 3

[20] Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao
Xu, Weihua Hu, Ivor Tsang, and Masashi Sugiyama. Co-
teaching: Robust training of deep neural networks with ex-
tremely noisy labels. In Adv. Neural Inform. Process. Syst.,
2018. 1, 2, 6, 9

[21] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015. 18

[22] Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and
Li Fei-Fei. Mentornet: Learning data-driven curriculum for
very deep neural networks on corrupted labels. In Int. Conf.
Mach. Learning., 2018. 1, 2, 9

[23] Dotan Kaufman, Koby Bibas, Eran Borenstein, Michael
Chertok, and Tal Hassner. Balancing specialization, general-
ization, and compression for detection and tracking. In Brit.
Mach. Vis. Conf., 2019. 1

[24] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna,
Yonglong Tian, Phillip Isola, Aaron Maschinot, Ce Liu, and
Dilip Krishnan. Supervised contrastive learning. In Adv.
Neural Inform. Process. Syst., 2020. 4

[25] Krishnateja Killamsetty, Changbin Li, Chen Zhao, Rishabh
Iyer, and Feng Chen. A reweighted meta learning
framework for robust few shot learning. arXiv preprint
arXiv:2011.06782, 2020. 3

[26] Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and
Stefano Soatto. Meta-learning with differentiable convex op-
timization. In Conf. Comput. Vis. Pattern Recog., 2019. 2

[27] Junnan Li, Yongkang Wong, Qi Zhao, and Mohan S Kankan-
halli. Learning to learn from noisy labeled data. In Conf.
Comput. Vis. Pattern Recog., 2019. 2

[28] Yuncheng Li, Jianchao Yang, Yale Song, Liangliang Cao,
Jiebo Luo, and Li-Jia Li. Learning from noisy labels with
distillation. In Int. Conf. Comput. Vis., 2017. 1

[29] Kevin J Liang, Weituo Hao, Dinghan Shen, Yufan Zhou,
Weizhu Chen, Changyou Chen, and Lawrence Carin.
MixKD: Towards efficient distillation of large-scale lan-
guage models. In Int. Conf. Learn. Represent., 2021. 18

[30] Bin Liu, Yue Cao, Yutong Lin, Qi Li, Zheng Zhang, Ming-
sheng Long, and Han Hu. Negative margin matters: Un-
derstanding margin in few-shot classification. In Eur. Conf.
Comput. Vis., 2020. 16

[31] Tongliang Liu and Dacheng Tao. Classification with noisy
labels by importance reweighting. IEEE Trans. Pattern Anal.
Mach. Intell., 2015. 2

9

[32] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. In Int. Conf. Learn. Represent., 2018. 7, 15

[33] Jiang Lu, Sheng Jin, Jian Liang, and Changshui Zhang. Ro-
bust few-shot learning for user-provided data. IEEE trans.
on neural networks and learning systems, 2020. 3

[34] Iacopo Masi, Anh Tuan Tran, Tal Hassner, Gozde Sahin, and
Gérard Medioni. Face-specific data augmentation for uncon-
strained face recognition. Int. J. Comput. Vis., 2019. 1

[35] Pratik Mazumder, Pravendra Singh, and Vinay P Nambood-
iri. Rnnp: A robust few-shot learning approach. In Proc.
Winter Conf. on Applications of Comput. Vis., 2021. 3, 6, 7,
12, 13, 14, 15, 16

[36] Tsendsuren Munkhdalai and Hong Yu. Meta networks. In
Int. Conf. Mach. Learning., 2017. 2

[37] Nagarajan Natarajan, Inderjit S Dhillon, Pradeep K Raviku-
mar, and Ambuj Tewari. Learning with noisy labels. In Adv.
Neural Inform. Process. Syst., 2013. 1

[38] Alex Nichol, Joshua Achiam, and John Schulman. On
first-order meta-learning algorithms. arXiv preprint
arXiv:1803.02999, 2018. 2

[39] Curtis G Northcutt, Anish Athalye, and Jonas Mueller. Per-
vasive label errors in test sets destabilize machine learning
benchmarks. arXiv preprint arXiv:2103.14749, 2021. 1

[40] Boris N Oreshkin, Pau Rodrı́guez López, and Alexandre La-
coste. Tadam: Task dependent adaptive metric for improved
few-shot learning. In Adv. Neural Inform. Process. Syst.,
2018. 2

[41] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An
imperative style, high-performance deep learning library. In
Adv. Neural Inform. Process. Syst., 2019. 6

[42] Samrudhdhi Bharatkumar Rangrej, Kevin J Liang, Xi Yin,
Guan Pang, Theofanis Karaletsos, Lior Wolf, and Tal Hass-
ner. Revisiting linear decision boundaries for few-shot learn-
ing with transformer hypernetworks, 2021. 6

[43] Jie Ren, Peter J Liu, Emily Fertig, Jasper Snoek, Ryan
Poplin, Mark A DePristo, Joshua V Dillon, and Balaji Lak-
shminarayanan. Likelihood ratios for out-of-distribution de-
tection. arXiv preprint arXiv:1906.02845, 2019. 2

[44] Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell,
Kevin Swersky, Joshua B Tenenbaum, Hugo Larochelle, and
Richard S Zemel. Meta-learning for semi-supervised few-
shot classification. In Int. Conf. Learn. Represent., 2018. 2,
6, 7, 12, 16, 17

[45] Victor Garcia Satorras and Joan Bruna Estrach. Few-shot
learning with graph neural networks. In Int. Conf. Learn.
Represent., 2018. 2

[46] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypi-
cal networks for few-shot learning. In Adv. Neural Inform.
Process. Syst., 2017. 1, 2, 3, 4, 6, 7, 12, 13, 14, 15, 16

[47] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS
Torr, and Timothy M Hospedales. Learning to compare: Re-
lation network for few-shot learning. In Conf. Comput. Vis.
Pattern Recog., 2018. 2

[48] Yonglong Tian, Yue Wang, Dilip Krishnan, Joshua B Tenen-
baum, and Phillip Isola. Rethinking few-shot image classi-

fication: a good embedding is all you need? In Eur. Conf.
Comput. Vis., 2020. 2

[49] Raciel Yera Toledo, Yailé Caballero Mota, and Luis
Martı́nez. Correcting noisy ratings in collaborative recom-
mender systems. Knowledge-Based Systems, 2015. 1

[50] Mariya Toneva, Alessandro Sordoni, Remi Tachet des
Combes, Adam Trischler, Yoshua Bengio, and Geoffrey J
Gordon. An empirical study of example forgetting during
deep neural network learning. In Int. Conf. Learn. Repre-
sent., 2019. 2

[51] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, An-
drew Ilyas, and Aleksander Madry. From imagenet to image
classification: Contextualizing progress on benchmarks. In
Int. Conf. Mach. Learning., 2020. 1

[52] Brendan Van Rooyen, Aditya Krishna Menon, and Robert C
Williamson. Learning with symmetric label noise:
The importance of being unhinged. arXiv preprint
arXiv:1505.07634, 2015. 6, 12

[53] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Adv. Neural Inform.
Process. Syst., 2017. 2, 4, 5

[54] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan
Wierstra, et al. Matching networks for one shot learning.
In Adv. Neural Inform. Process. Syst., 2016. 1, 2, 6, 7, 12,
13, 14, 15, 16, 17, 18

[55] Apoorv Vyas, Nataraj Jammalamadaka, Xia Zhu, Dipankar
Das, Bharat Kaul, and Theodore L. Willke. Out-of-
distribution detection using an ensemble of self supervised
leave-out classifiers. In Eur. Conf. Comput. Vis., 2018. 2

[56] Xin Wang, Fisher Yu, Ruth Wang, Trevor Darrell, and
Joseph E Gonzalez. Tafe-net: Task-aware feature embed-
dings for low shot learning. In Conf. Comput. Vis. Pattern
Recog., 2019. 2

[57] Yisen Wang, Weiyang Liu, Xingjun Ma, James Bailey,
Hongyuan Zha, Le Song, and Shu-Tao Xia. Iterative learn-
ing with open-set noisy labels. In Conf. Comput. Vis. Pattern
Recog., 2018. 1

[58] Yaqing Wang, Quanming Yao, James T Kwok, and Lionel M
Ni. Generalizing from a few examples: A survey on few-shot
learning. ACM Computing Surveys, 2020. 2

[59] Zhen Wang, Guosheng Hu, and Qinghua Hu. Training noise-
robust deep neural networks via meta-learning. In Conf.
Comput. Vis. Pattern Recog., 2020. 2

[60] Yuewei Yang, Kevin J Liang, and Lawrence Carin. Object
detection as a positive-unlabeled problem. In Brit. Mach.
Vis. Conf., 2020. 1

[61] Yu Yao, Tongliang Liu, Bo Han, Mingming Gong, Jiankang
Deng, Gang Niu, and Masashi Sugiyama. Dual t: Reducing
estimation error for transition matrix in label-noise learning.
arXiv preprint arXiv:2006.07805, 2020. 2

[62] Han-Jia Ye, Hexiang Hu, De-Chuan Zhan, and Fei Sha. Few-
shot learning via embedding adaptation with set-to-set func-
tions. In Conf. Comput. Vis. Pattern Recog., 2020. 2

[63] Mang Ye and Pong C Yuen. PurifyNet: A robust person re-
identification model with noisy labels. IEEE Trans. Pattern
Anal. Mach. Intell., 2020. 1

10

[64] Li Yin, Juan-Manuel Perez-Rua, and Kevin J Liang. Sylph:
A hypernet-framework for incremental few-shot object de-
tection. In Conf. Comput. Vis. Pattern Recog., 2022. 1

[65] Xingrui Yu, Bo Han, Jiangchao Yao, Gang Niu, Ivor Tsang,
and Masashi Sugiyama. How does disagreement help gener-
alization against label corruption? In Int. Conf. Mach. Learn-
ing., 2019. 2

[66] Chi Zhang, Yujun Cai, Guosheng Lin, and Chunhua Shen.
Deepemd: Few-shot image classification with differentiable
earth mover’s distance and structured classifiers. In Conf.
Comput. Vis. Pattern Recog., 2020. 2

[67] Yivan Zhang, Gang Niu, and Masashi Sugiyama. Learning
noise transition matrix from only noisy labels via total varia-
tion regularization. arXiv preprint arXiv:2102.02414, 2021.
2

[68] Guoqing Zheng, Ahmed Hassan Awadallah, and Susan Du-
mais. Meta label correction for noisy label learning. In Proc.
of the AAAI Conf. on Artificial Intelligence, 2021. 2

11

We include supplemental material for our work here.
Appx. A shows the mislabeled samples in the 5-way 5-
shot support set in Fig. 1, as well as two more example
noisy support sets. We discuss computational complex-
ity considerations for iteratively solving for the median in
Sec. B. In Appx. C, we investigate noisy few-shot perfor-
mance for different numbers of shots from the 5-shot setting
considered in Sec. 6.2. Appx. D contains descriptions and
additional implementation details of the baselines that we
compare against. We perform further ablation studies be-
yond Sec. 6.4, investigating feature extractors, hyperparam-
eter settings, and architectural design choices of TraNFS in
Appx. E.

A. Noisy support set examples

Noisy few-shot learning is a challenging problem. Even
before adding noise, there can be significant variation
within a class, largely due to the manner in which the Im-
ageNet [13] dataset (from which MiniImageNet [54] and
TieredImageNet [44] are derived) was constructed. Some
images in the clean version of ImageNet are mislabeled
due to human error, but even among the correctly labeled
objects, there are non-canonical views, images with multi-
ple objects (possibly from multiple ImageNet classes), and
classes that are close to synonymous. We provide several
examples of noisy support sets from MiniImageNet with
40% symmetric label swap noise [52] in Fig. 5, with the
clean and noisy samples framed in green and red, respec-
tively. While humans are generally able to separate the
noisy samples from the clean samples with some scrutiny,
this is in large part due to prior conceptual understandings
of the classes depicted. Few-shot models presented with
support sets such as those in Fig. 5 are tasked with learning
how to distinguish the depicted classes without having pre-
viously seen these classes, a much more difficult problem.

B. A Note On Median Complexity

As discussed in Sec. 4.1, median computation has to
be performed iteratively since no closed form solution ex-
ists. We have chosen the 2nd- over 1st-order optimization
as the former provides an optimal step size at each iter-
ation, speeding up convergence. This choice may seem
costly at first glance, but computational complexity analy-
sis of Eq. (7) shows negligible 2nd-order method overhead.
Each median update iteration takes 4DK + 2K −D flops
for gradient computation, K flops for optimal step calcula-
tion (2nd-order method overhead), and 2D flops for param-
eter update. We emphasize that this optimization is done
to calculate a median prototype (as opposed to updating the
model weights); D and K are both fairly small.

Table 6. Few-shot performance with symmetric label swap noise
on 5-way 3-shot MiniImageNet [54].

Model \ Noise Proportion 0% 33.3%

Oracle 62.60 ± 0.17 56.89 ± 0.18
Nearest k = 1 52.98 ± 0.18 39.92 ± 0.18
Nearest k = 3 50.59 ± 0.18 38.76 ± 0.16
Nearest k = 5 50.20 ± 0.17 40.05 ± 0.16

Linear Classifier 61.54 ± 0.17 46.06 ± 0.17
Matching Networks [54] 57.86 ± 0.18 44.92 ± 0.18

MAML [17] 59.79 ± 0.20 40.41 ± 0.17
Vanilla ProtoNet [46] 62.54 ± 0.18 48.78 ± 0.19

RNNP [35] 62.57 ± 0.17 48.76 ± 0.19
Median 62.60 ± 0.17 50.40 ± 0.19

Absolute T = 10.0 61.77 ± 0.17 50.93 ± 0.19
Absolute T = 25.0 62.54 ± 0.17 50.84 ± 0.19
Absolute T = 50.0 62.69 ± 0.17 50.06 ± 0.19
Euclidean T = 10.0 62.58 ± 0.17 50.83 ± 0.19
Euclidean T = 25.0 62.62 ± 0.18 50.06 ± 0.19
Euclidean T = 50.0 62.62 ± 0.17 49.51 ± 0.19

Cosine T = 0.2 62.75 ± 0.17 49.63 ± 0.19
Cosine T = 0.5 62.55 ± 0.17 49.15 ± 0.19
Cosine T = 1.0 62.52 ± 0.17 49.20 ± 0.19
Cosine T = 2.0 62.63 ± 0.17 49.05 ± 0.19
Cosine T = 5.0 62.54 ± 0.17 48.96 ± 0.19

TraNFS-2 64.17 ± 0.18 53.35 ± 0.21
TraNFS-3 64.28 ± 0.18 53.84 ± 0.21

Table 7. Few-shot performance with outlier noise on 5-way 3-shot
MiniImageNet [54].

Model \ Noise Proportion 0% 33.3%

Oracle 62.60 ± 0.17 56.89 ± 0.18
Nearest k = 1 53.07 ± 0.18 44.66 ± 0.18
Nearest k = 3 50.40 ± 0.18 41.59 ± 0.17
Nearest k = 5 50.24 ± 0.17 42.26 ± 0.17

Linear Classifier 61.58 ± 0.17 51.21 ± 0.18
Matching Networks [54] 57.82 ± 0.18 48.56 ± 0.19

MAML [17] 59.76 ± 0.19 47.08 ± 0.19
Vanilla ProtoNet [46] 62.43 ± 0.17 52.78 ± 0.19

RNNP [35] 62.55 ± 0.17 52.88 ± 0.19
Median 62.53 ± 0.17 53.82 ± 0.19

Absolute T = 10.0 61.54 ± 0.17 53.76 ± 0.19
Absolute T = 25.0 62.47 ± 0.17 54.07 ± 0.19
Absolute T = 50.0 62.69 ± 0.17 53.73 ± 0.19
Euclidean T = 10.0 62.56 ± 0.18 54.10 ± 0.19
Euclidean T = 25.0 62.57 ± 0.17 53.72 ± 0.18
Euclidean T = 50.0 62.76 ± 0.17 53.55 ± 0.19

Cosine T = 0.2 62.58 ± 0.17 53.46 ± 0.19
Cosine T = 0.5 62.50 ± 0.17 53.03 ± 0.19
Cosine T = 1.0 62.50 ± 0.17 52.84 ± 0.19
Cosine T = 2.0 62.72 ± 0.17 53.16 ± 0.19
Cosine T = 5.0 62.63 ± 0.18 53.19 ± 0.19

TraNFS-2 63.63 ± 0.18 54.75 ± 0.20
TraNFS-3 63.61 ± 0.18 54.72 ± 0.20

C. Different number of shots

While the experiments in Sec. 6.2 are conducted with 5
shots, many of our findings on noisy FSL apply to other
numbers of shots as well. We provide additional results be-
low for MiniImageNet [54] with K = {3, 10} shots.

12

(a) (b) (c)

Figure 5. Noisy support set examples. Images with green boxes are clean samples from the original class, while red boxes are mislabeled
samples due to symmetric label swaps. (a) is the support set shown in Fig. 1 of the main paper.

Table 8. Few-shot performance with symmetric label swap noise on 5-way 10-shot MiniImageNet [54].

Model \ Noise Proportion 0% 10% 20% 30% 40% 50% 60% 70%

Oracle 73.62 ± 0.14 72.78 ± 0.15 71.78 ± 0.15 70.82 ± 0.15 69.27 ± 0.16 64.70 ± 0.17 60.59 ± 0.17 53.88 ± 0.18
Nearest k = 1 53.02 ± 0.19 49.04 ± 0.18 45.02 ± 0.18 40.87 ± 0.18 37.28 ± 0.17 33.13 ± 0.17 29.07 ± 0.16 24.64 ± 0.15
Nearest k = 3 53.79 ± 0.19 50.84 ± 0.18 47.24 ± 0.18 43.21 ± 0.17 38.58 ± 0.17 33.72 ± 0.16 29.00 ± 0.15 24.24 ± 0.13
Nearest k = 5 55.03 ± 0.20 53.08 ± 0.19 50.29 ± 0.19 46.50 ± 0.18 41.97 ± 0.17 36.51 ± 0.16 30.75 ± 0.15 25.26 ± 0.14

Linear Classifier 72.08 ± 0.14 68.56 ± 0.15 64.17 ± 0.16 58.90 ± 0.16 52.68 ± 0.16 45.43 ± 0.16 37.20 ± 0.15 29.18 ± 0.14
Matching Networks [54] 62.63 ± 0.19 60.81 ± 0.19 58.21 ± 0.19 54.79 ± 0.19 50.05 ± 0.19 43.47 ± 0.18 35.90 ± 0.17 28.70 ± 0.15

MAML [17] 64.37 ± 0.18 64.42 ± 0.18 55.27 ± 0.18 44.17 ± 0.18 44.10 ± 0.18 44.01 ± 0.18 32.03 ± 0.16 20.04 ± 0.13
Vanilla ProtoNet [46] 73.65 ± 0.14 71.80 ± 0.15 69.19 ± 0.15 65.28 ± 0.16 59.52 ± 0.17 51.42 ± 0.18 41.43 ± 0.18 32.29 ± 0.18

RNNP [35] 73.47 ± 0.14 71.80 ± 0.15 69.37 ± 0.16 65.88 ± 0.17 60.51 ± 0.18 52.25 ± 0.19 41.74 ± 0.19 32.47 ± 0.19
Median 73.54 ± 0.14 71.90 ± 0.15 69.30 ± 0.15 65.59 ± 0.16 59.88 ± 0.17 51.42 ± 0.18 41.13 ± 0.19 31.99 ± 0.18

Absolute T = 10.0 71.12 ± 0.15 69.58 ± 0.16 66.77 ± 0.17 62.27 ± 0.18 54.91 ± 0.20 45.13 ± 0.21 35.05 ± 0.20 28.20 ± 0.18
Absolute T = 25.0 73.10 ± 0.14 71.66 ± 0.15 69.13 ± 0.16 65.15 ± 0.17 58.63 ± 0.18 49.02 ± 0.19 38.40 ± 0.20 30.05 ± 0.18
Absolute T = 50.0 73.49 ± 0.14 71.88 ± 0.15 69.42 ± 0.16 65.52 ± 0.16 59.54 ± 0.18 50.65 ± 0.19 40.04 ± 0.19 31.34 ± 0.18
Euclidean T = 10.0 73.11 ± 0.15 71.60 ± 0.15 69.28 ± 0.16 65.57 ± 0.17 59.59 ± 0.18 50.45 ± 0.19 39.73 ± 0.19 30.88 ± 0.18
Euclidean T = 25.0 73.57 ± 0.14 71.98 ± 0.15 69.50 ± 0.16 65.78 ± 0.16 60.02 ± 0.18 51.59 ± 0.18 40.96 ± 0.19 31.98 ± 0.18
Euclidean T = 50.0 73.64 ± 0.14 71.96 ± 0.15 69.36 ± 0.16 65.68 ± 0.16 59.95 ± 0.17 51.58 ± 0.18 41.30 ± 0.19 32.18 ± 0.18

Cosine T = 0.2 73.62 ± 0.14 71.94 ± 0.15 69.44 ± 0.15 65.65 ± 0.16 59.91 ± 0.17 51.49 ± 0.18 41.14 ± 0.19 32.13 ± 0.18
Cosine T = 0.5 73.60 ± 0.14 71.85 ± 0.15 69.26 ± 0.15 65.46 ± 0.16 59.64 ± 0.17 51.50 ± 0.18 41.23 ± 0.19 32.18 ± 0.18
Cosine T = 1.0 73.57 ± 0.14 71.78 ± 0.15 69.13 ± 0.15 65.36 ± 0.16 59.62 ± 0.17 51.56 ± 0.18 41.44 ± 0.18 32.24 ± 0.18
Cosine T = 2.0 73.65 ± 0.14 71.83 ± 0.15 69.08 ± 0.16 65.25 ± 0.16 59.58 ± 0.17 51.26 ± 0.18 41.36 ± 0.18 32.10 ± 0.18
Cosine T = 5.0 73.55 ± 0.14 71.73 ± 0.15 69.06 ± 0.15 65.19 ± 0.16 59.42 ± 0.17 51.38 ± 0.18 41.31 ± 0.19 32.19 ± 0.18

TraNFS-2 72.80 ± 0.15 71.86 ± 0.15 70.54 ± 0.16 68.25 ± 0.17 64.29 ± 0.19 57.04 ± 0.21 45.84 ± 0.24 35.09 ± 0.23
TraNFS-3 73.17 ± 0.15 72.14 ± 0.15 70.71 ± 0.16 68.48 ± 0.17 64.59 ± 0.18 57.45 ± 0.21 45.80 ± 0.24 35.12 ± 0.23

C.1. 3-shot MiniImageNet

We show 5-way 3-shot performance on MiniImageNet
with symmetric label swap (Table 6) and outlier (Table 7)
noise. Note that we do not show results for paired label
swap noise, as at 33.3% noise, paired label noise is identical
to symmetric, and at 66.7%, the clean class is dominated by
the noisy class.

We observe similar trends as in the 5-way 5-shot exper-
iments reported in Tables 1, 2, and 3. The baseline meth-
ods suffer dramatically from replacing a clean sample in the
support set with a single noisy sample, with ProtoNet [46]
suffering almost a 14% drop in accuracy in the 33.3% sym-

metric label swap noise setting, as compared to the 5.71%
drop in accuracy from removing a shot. Our proposed
ProtoNet variants at various temperatures T all outperform
vanilla ProtoNet. On the other hand, our TraNFS surpasses
vanilla ProtoNet by 5.06% and impressively is only 3.05%
short of the Oracle, despite not having knowledge of the
noisy samples within the support set.

C.2. 10-shot MiniImageNet

We show 5-way 10-shot performance on MiniImageNet
with symmetric label swap (Table 8), paired label swap (Ta-
ble 9), and outlier (Table 10) noise. Note that we only show

13

(a) Nearest Neighbors
(b) Matching Networks

(c) Linear Classifier

(d) Prototypical Networks

Figure 6. Visual overview of several of the few-shot method archetypes considered.

Table 9. Few-shot performance with paired label swap noise on
5-way 10-shot MiniImageNet [54].

Model \ Noise Proportion 20% 30% 40%

Oracle 71.78 ± 0.15 70.82 ± 0.15 69.27 ± 0.16
Nearest k = 1 44.85 ± 0.18 40.80 ± 0.18 36.58 ± 0.17
Nearest k = 3 46.96 ± 0.18 42.31 ± 0.17 37.32 ± 0.16
Nearest k = 5 49.88 ± 0.18 45.21 ± 0.17 39.47 ± 0.17

Linear Classifier 63.54 ± 0.16 56.70 ± 0.16 47.85 ± 0.16
Matching Networks [54] 57.74 ± 0.19 52.80 ± 0.18 45.37 ± 0.17

MAML [17] 55.05 ± 0.18 41.95 ± 0.18 41.83 ± 0.18
Vanilla ProtoNet [46] 68.34 ± 0.16 62.59 ± 0.16 52.73 ± 0.17

RNNP [35] 68.89 ± 0.16 63.86 ± 0.17 54.06 ± 0.18
Median 69.04 ± 0.15 63.50 ± 0.16 53.61 ± 0.17

Absolute T = 50.0 69.07 ± 0.16 63.62 ± 0.17 53.78 ± 0.18
Absolute T = 25.0 69.00 ± 0.16 63.75 ± 0.17 53.88 ± 0.18
Absolute T = 10.0 66.94 ± 0.17 61.82 ± 0.18 52.28 ± 0.20
Euclidean T = 50.0 68.86 ± 0.16 63.20 ± 0.17 53.24 ± 0.17
Euclidean T = 25.0 69.12 ± 0.16 63.48 ± 0.17 53.58 ± 0.17
Euclidean T = 10.0 68.91 ± 0.16 63.73 ± 0.17 53.81 ± 0.18

Cosine T = 5.0 68.50 ± 0.15 62.72 ± 0.16 52.76 ± 0.17
Cosine T = 2.0 68.42 ± 0.15 62.63 ± 0.16 52.87 ± 0.17
Cosine T = 1.0 68.48 ± 0.16 62.59 ± 0.17 52.86 ± 0.17
Cosine T = 0.5 68.58 ± 0.15 62.76 ± 0.16 52.90 ± 0.17
Cosine T = 0.2 68.82 ± 0.16 63.14 ± 0.17 53.27 ± 0.17

TraNFS-2 70.13 ± 0.16 66.20 ± 0.17 56.97 ± 0.20
TraNFS-3 70.38 ± 0.16 67.03 ± 0.18 58.94 ± 0.21

20%, 30%, and 40% noise proportion for paired label swap
noise, as at 0% and 10%, paired label swapping is no differ-
ent from symmetric swapping (Table 8) for 10 shots, and at
50% and above the noisy class would have either a share of
or the outright majority.

Our proposed TraNFS shines with 10-shot tasks as well.
As in the 5-shot case, our method does especially well in

moderate to high noise levels. In particular, we observe over
5% absolute improvement from TraNFS over vanilla Pro-
toNet at 40% and 50% symmetric label swap noise and an
impressive 6.21% improvement for 40% paired label swap
noise. TraNFS is also the best method for rejecting outlier
noise as well.

D. Method descriptions

Fig. 6 shows a visual comparison of some of the base-
lines we compare against. We discuss implementation de-
tails below.

Oracle. When noise appears in a support set, accuracy of
the few-shot model is reduced for two reasons: (1) misla-
beled samples provide the model with misleading informa-
tion about the class, and (2) clean samples that would have
otherwise been informative were removed from the support
set. FSL performance can be heavily influenced by the num-
ber of shots, especially in the low-data regime, so we find
it important to separate out the aforementioned two sources
of performance degradation. For this purpose, we include
in our results tables an Oracle model consisting of a vanilla
ProtoNet [46] with prototypes produced from only the cor-
rectly labeled samples in the support set. Note that the Or-
acle requires knowing the identities of the noisy samples,
which cannot be reasonably expected in many real-world
settings and is thus not a fair comparison with the other
methods, but we include it to give a sense of constructive
information content still available in the support set after

14

Table 10. Few-shot performance with outlier noise on 5-way 10-shot MiniImageNet [54].

Model \ Noise Proportion 0% 10% 20% 30% 40% 50% 60% 70%

Oracle 73.62 ± 0.14 72.78 ± 0.15 71.78 ± 0.15 70.82 ± 0.15 69.27 ± 0.16 64.70 ± 0.17 60.59 ± 0.17 53.88 ± 0.18
Nearest k = 1 53.14 ± 0.19 50.61 ± 0.19 48.25 ± 0.18 45.62 ± 0.18 42.91 ± 0.18 39.99 ± 0.17 37.06 ± 0.17 33.66 ± 0.17
Nearest k = 3 53.55 ± 0.19 51.49 ± 0.18 49.16 ± 0.18 46.50 ± 0.18 43.69 ± 0.17 40.63 ± 0.17 37.07 ± 0.16 33.15 ± 0.15
Nearest k = 5 54.81 ± 0.20 53.31 ± 0.19 51.46 ± 0.19 49.18 ± 0.18 46.35 ± 0.18 43.13 ± 0.17 39.32 ± 0.16 35.05 ± 0.16

Linear Classifier 71.90 ± 0.15 69.62 ± 0.15 66.94 ± 0.16 63.70 ± 0.16 59.86 ± 0.16 55.31 ± 0.17 49.84 ± 0.17 43.42 ± 0.17
Matching Networks [54] 62.68 ± 0.19 61.37 ± 0.19 59.58 ± 0.19 57.52 ± 0.19 54.58 ± 0.19 51.12 ± 0.19 46.48 ± 0.19 40.68 ± 0.18

MAML [17] 64.30 ± 0.18 64.43 ± 0.18 58.82 ± 0.18 51.30 ± 0.19 51.37 ± 0.19 51.36 ± 0.19 42.05 ± 0.19 30.89 ± 0.18
Vanilla ProtoNet [46] 73.67 ± 0.14 72.27 ± 0.15 70.55 ± 0.15 68.08 ± 0.16 64.93 ± 0.16 60.66 ± 0.17 55.28 ± 0.18 47.94 ± 0.19

RNNP [35] 73.35 ± 0.14 71.92 ± 0.15 70.16 ± 0.15 67.97 ± 0.16 64.90 ± 0.17 60.81 ± 0.17 55.34 ± 0.18 48.07 ± 0.19
Median 73.69 ± 0.14 72.50 ± 0.15 70.78 ± 0.15 68.47 ± 0.15 65.26 ± 0.16 61.07 ± 0.17 55.46 ± 0.18 47.92 ± 0.19

Absolute T = 50.0 73.56 ± 0.14 72.44 ± 0.15 70.82 ± 0.15 68.60 ± 0.16 65.48 ± 0.16 61.33 ± 0.17 55.62 ± 0.18 48.19 ± 0.19
Absolute T = 25.0 73.26 ± 0.14 72.14 ± 0.15 70.65 ± 0.15 68.57 ± 0.16 65.53 ± 0.17 61.29 ± 0.17 55.45 ± 0.18 47.89 ± 0.19
Absolute T = 10.0 71.10 ± 0.15 69.96 ± 0.15 68.48 ± 0.16 66.29 ± 0.17 63.36 ± 0.17 58.83 ± 0.18 52.58 ± 0.19 44.80 ± 0.20
Euclidean T = 50.0 73.62 ± 0.14 72.39 ± 0.15 70.59 ± 0.15 68.28 ± 0.16 65.21 ± 0.16 60.94 ± 0.17 55.37 ± 0.18 48.04 ± 0.19
Euclidean T = 25.0 73.58 ± 0.14 72.36 ± 0.15 70.70 ± 0.15 68.40 ± 0.16 65.33 ± 0.16 61.08 ± 0.17 55.15 ± 0.18 47.79 ± 0.19
Euclidean T = 10.0 73.19 ± 0.15 72.03 ± 0.15 70.48 ± 0.16 68.21 ± 0.16 65.00 ± 0.17 60.50 ± 0.18 54.51 ± 0.19 46.58 ± 0.20

Cosine T = 5.0 73.57 ± 0.14 72.25 ± 0.15 70.44 ± 0.15 67.97 ± 0.16 64.77 ± 0.16 60.61 ± 0.17 55.14 ± 0.18 47.94 ± 0.19
Cosine T = 2.0 73.63 ± 0.14 72.28 ± 0.14 70.47 ± 0.15 68.10 ± 0.16 64.79 ± 0.16 60.60 ± 0.17 55.02 ± 0.18 48.03 ± 0.19
Cosine T = 1.0 73.46 ± 0.14 72.19 ± 0.15 70.33 ± 0.15 67.97 ± 0.16 64.80 ± 0.16 60.59 ± 0.17 55.09 ± 0.18 47.88 ± 0.19
Cosine T = 0.5 73.64 ± 0.14 72.30 ± 0.15 70.53 ± 0.15 68.13 ± 0.16 65.07 ± 0.16 60.73 ± 0.17 55.16 ± 0.18 48.13 ± 0.19
Cosine T = 0.2 73.55 ± 0.14 72.40 ± 0.15 70.61 ± 0.15 68.37 ± 0.16 65.26 ± 0.16 61.00 ± 0.17 55.34 ± 0.18 47.97 ± 0.19

TraNFS-2 72.43 ± 0.15 71.54 ± 0.16 70.24 ± 0.16 68.56 ± 0.17 65.93 ± 0.18 62.21 ± 0.20 56.98 ± 0.21 49.41 ± 0.22
TraNFS-3 72.91 ± 0.15 72.12 ± 0.15 70.92 ± 0.16 69.47 ± 0.16 67.14 ± 0.17 63.60 ± 0.19 58.68 ± 0.20 50.66 ± 0.22

noise corruption.

Nearest Neighbors. In the context of FSL, nearest neigh-
bors (Fig. 6a) is a simple, non-parametric classification
technique which classifies query samples based on the la-
bels of the k closest support samples in embedding space.
Whichever class has the plurality among the k nearest
neighbor support samples is the prediction, with ties bro-
ken uniformly at random among the tied classes. We report
results for k ∈ {1, 3, 5}.

Linear Classifier. We train a single fully connected
layer RD → RN on top of frozen convolutional features
(Fig. 6c). For each episode, the parameters of the fully con-
nected layer are learned with the AdamW [32] optimizer
with weight decay 0.01, trained for 100 steps. Note that
this approach resembles the Baseline method [11], with the
primary difference being that we use the ProtoNet objec-
tive and episodic meta-training to learn the feature extractor
F , as opposed to the softmax cross entropy loss with batch
learning on the base classes.

Matching Networks [54]. Matching networks (Fig. 6b) use
an attention mechanism to compare the embedded query
sample with embeddings of each of the support set samples,
with the prediction being a linear combination of the sup-
port set labels based on the result of this attention. While
this mechanism is trainable in a meta-learning setup, we
found that we achieved better results than those reported
in the literature by using a frozen convolutional feature ex-
tractor trained with the ProtoNet loss.

MAML [17]. Model-Agnostic Meta-Learning (MAML)
seeks to learn a good initialization so that the model can be
quickly adapted to new tasks, with this initialization learned
through second-order gradients. As such, unlike the other
methods we compare against, we do not use the weights
of the same frozen 4-layer convolutional feature extractor
for MAML. Instead, we use the Adam optimizer to train
MAML with a meta-learning rate of 3 × 10−3 and inner
loop learning rate of 1×10−2, using 5 adaptation steps dur-
ing meta-training and 10 steps during meta-test. We use the
same random horizontal flips, resized crops, and color jit-
ters for data augmentations as the rest of our experiments.

ProtoNet [46]. ProtoNet (Fig. 6d) was introduced in Sec. 3.
We refer to the version of ProtoNet proposed by Snell et
al. in [46] (using the mean of the support embeddings) as
Vanilla ProtoNet to distinguish it from the median and sim-
ilarity weighted variants of ProtoNet that we propose in
Sec. 4.

Baseline++ [11]. Baseline++ was proposed as a simple al-
ternative to recent few-shot methods. Rather than requir-
ing relatively complex bi-level meta-training, [11] proposed
simply pre-training a feature extractor with a standard su-
pervised cross-entropy loss, freezing the feature extractor’s
weights, and then fine-tuning a one-layer classifier just on
top of the few examples in the novel class’s support set fea-
tures. In particular, the Baseline++ method uses cosine sim-
ilarity and a softmax for the classifier. Such an approach
has been shown to be surprisingly competitive with popular
few-shot approaches. We implement this cosine similarity

15

Table 11. Temperature sweep for our ProtoNet variants: symmetric label swap noise. 5-way 5-shot Acc. ± 95% CI on MiniIma-
geNet [54], TieredImageNet [44]. Best viewed in color.

Model \ Noise Proportion 0% 20% 40% 60%

Absolute T = 50.0 68.18 ± 0.16 71.24 ± 0.18 62.98 ± 0.17 66.56 ± 0.20 51.68 ± 0.19 54.97 ± 0.21 39.24 ± 0.20 41.59 ± 0.21
Absolute T = 25.0 68.24 ± 0.16 71.27 ± 0.18 63.46 ± 0.17 66.87 ± 0.20 52.06 ± 0.20 55.26 ± 0.22 39.78 ± 0.20 42.54 ± 0.22
Absolute T = 10.0 67.15 ± 0.17 70.15 ± 0.19 62.96 ± 0.18 66.10 ± 0.20 52.08 ± 0.20 55.08 ± 0.23 39.92 ± 0.21 42.49 ± 0.23
Absolute T = 5.0 63.89 ± 0.17 66.56 ± 0.19 59.63 ± 0.18 62.67 ± 0.21 51.30 ± 0.20 53.83 ± 0.22 37.99 ± 0.21 39.91 ± 0.23
Absolute T = 1.0 50.26 ± 0.20 51.39 ± 0.22 47.04 ± 0.20 48.40 ± 0.23 40.40 ± 0.21 41.45 ± 0.23 31.03 ± 0.20 31.75 ± 0.21

Euclidean T = 50.0 68.31 ± 0.16 71.31 ± 0.18 62.78 ± 0.17 66.36 ± 0.19 51.86 ± 0.19 55.19 ± 0.21 38.90 ± 0.20 41.19 ± 0.21
Euclidean T = 25.0 68.32 ± 0.16 71.48 ± 0.18 63.02 ± 0.17 66.69 ± 0.19 52.09 ± 0.19 55.62 ± 0.21 39.33 ± 0.20 41.75 ± 0.21
Euclidean T = 10.0 68.23 ± 0.16 71.18 ± 0.19 63.46 ± 0.17 67.04 ± 0.20 52.24 ± 0.20 55.78 ± 0.22 39.87 ± 0.20 42.53 ± 0.22
Euclidean T = 5.0 67.53 ± 0.16 70.54 ± 0.18 63.00 ± 0.18 66.56 ± 0.20 53.79 ± 0.20 57.37 ± 0.22 39.63 ± 0.21 42.31 ± 0.22
Euclidean T = 1.0 56.75 ± 0.19 59.17 ± 0.21 52.31 ± 0.19 54.82 ± 0.22 44.06 ± 0.20 46.09 ± 0.23 32.88 ± 0.20 33.99 ± 0.21
Cosine T = 10.0 68.24 ± 0.16 71.27 ± 0.18 62.47 ± 0.17 66.16 ± 0.19 51.41 ± 0.19 54.96 ± 0.21 38.38 ± 0.19 40.74 ± 0.21
Cosine T = 5.0 68.31 ± 0.16 71.16 ± 0.18 62.51 ± 0.17 65.99 ± 0.20 51.51 ± 0.19 54.78 ± 0.21 38.55 ± 0.19 40.81 ± 0.21
Cosine T = 2.0 68.28 ± 0.16 71.22 ± 0.18 62.57 ± 0.17 66.24 ± 0.19 51.59 ± 0.19 55.06 ± 0.21 38.71 ± 0.19 40.99 ± 0.21
Cosine T = 1.0 68.21 ± 0.16 71.21 ± 0.18 62.70 ± 0.17 66.47 ± 0.19 51.72 ± 0.19 55.27 ± 0.21 38.92 ± 0.19 41.32 ± 0.21
Cosine T = 0.5 68.42 ± 0.16 71.31 ± 0.18 63.13 ± 0.18 66.81 ± 0.20 52.08 ± 0.19 55.60 ± 0.22 39.36 ± 0.20 42.14 ± 0.22
Cosine T = 0.2 68.20 ± 0.16 70.59 ± 0.18 63.46 ± 0.17 66.62 ± 0.20 52.42 ± 0.20 55.78 ± 0.22 39.90 ± 0.20 42.56 ± 0.22
Cosine T = 0.1 67.52 ± 0.16 69.30 ± 0.19 63.07 ± 0.18 65.25 ± 0.20 52.22 ± 0.20 54.24 ± 0.23 39.85 ± 0.21 41.79 ± 0.23

Table 12. Temperature sweep for our ProtoNet variants:
paired label swap noise. 5-way 5-shot Acc. ± 95% CI on Mini-
ImageNet [54], TieredImageNet [44]. Best viewed in color.

Model \ Noise Proportion 40%

Absolute T = 50.0 48.64 ± 0.19 51.83 ± 0.21
Absolute T = 25.0 49.38 ± 0.20 52.40 ± 0.22
Absolute T = 10.0 49.56 ± 0.20 52.54 ± 0.23
Absolute T = 5.0 47.18 ± 0.21 49.42 ± 0.23
Absolute T = 1.0 37.85 ± 0.21 38.47 ± 0.23

Euclidean T = 50.0 48.43 ± 0.19 51.39 ± 0.21
Euclidean T = 25.0 48.67 ± 0.19 51.90 ± 0.21
Euclidean T = 10.0 49.37 ± 0.19 52.55 ± 0.22
Euclidean T = 5.0 49.75 ± 0.20 52.57 ± 0.22
Euclidean T = 1.0 41.30 ± 0.21 42.92 ± 0.22
Cosine T = 10.0 47.75 ± 0.19 50.95 ± 0.21
Cosine T = 5.0 48.03 ± 0.19 51.17 ± 0.21
Cosine T = 2.0 48.03 ± 0.19 51.19 ± 0.21
Cosine T = 1.0 48.53 ± 0.19 51.71 ± 0.21
Cosine T = 0.5 48.90 ± 0.19 52.14 ± 0.21
Cosine T = 0.2 49.40 ± 0.19 52.72 ± 0.22
Cosine T = 0.1 49.71 ± 0.20 51.96 ± 0.23

classifier in our framework, with the primary difference be-
ing that we use a feature extractor trained with the ProtoNet
loss instead of a cross-entropy loss, in order to compare the
classifier design on even terms. Note that [11] also proposed
a simpler approach using a standard linear layer instead of
cosine distance, which they referred to as Baseline; other
than the training objective of the fixed feature extractor, the
Baseline method is equivalent to our Linear Classifier base-
line.

NegMargin [30]. Taking insights from the metric learn-
ing literature, [30] suggests that discriminability shortcom-
ings of the softmax loss can be mitigated by learning with
a margin. Surprisingly, NegMargin found that positive mar-
gins underperform in open-set few-shot classification sce-
narios, while negative margins can lead to significant im-
provements in performance due to improved transferabil-

ity. To perform few-shot classification, NegMargin takes a
similar approach to [11]–first pre-training and then freezing
the feature extractor, followed by fine-tuning of a classifier
for the novel support set–with the primary difference being
the substitution of the standard softmax with the negative
margin softmax loss during pre-training. As such, unlike
the other methods we compare against, we do not use the
weights of the same frozen 4-layer convolutional feature
extractor for NegMargin. We use the official NegMargin
codebase,3 modifying their code to inject artificial noisy la-
bels into support sets during meta-test evaluation.
RNNP [35]. Robust Nearest Neighbor Prototype (RNNP)
creates hybrid examples by interpolating between samples
within each support set, somewhat similarly to mixup. Us-
ing ProtoNet prototypes of the original support embeddings
as initialization for the class centers, k-means is then used to
refine the prototypes in an unsupervised manner. We repro-
duce RNNP, using the suggested K − 1 hybrids per support
sample and mixing ratio of 0.8 when producing hybrids.

E. Additional ablation studies

Feature extractor training objective. We consider the
performance of few-shot learning methods within the con-
text of support set noise primarily with a frozen feature
extractor, as is common practice in many previous few-
shot works [11, 30, 46]. This allows us to isolate our
comparison to the method, as opposed to the learned fea-
tures. Nonetheless, the learned features have an impact on
model performance. We compare the performance of 4-
layer convolutional neural networks feature extractors [54]
pre-trained with the ProtoNet [46] and NegMargin [30] ob-
jectives, observing {69.66 ± 0.16, 59.88 ± 0.18, 47.53 ±

3https://github.com/bl0/negative- margin.few-
shot

16

https://github.com/bl0/negative-margin.few-shot
https://github.com/bl0/negative-margin.few-shot

Table 13. Temperature sweep for our ProtoNet variants: outlier noise. 5-way 5-shot Acc. ± 95% CI on MiniImageNet [54], Tiered-
ImageNet [44]. Best viewed in color.

Model \ Noise Proportion 0% 20% 40% 60%

Absolute T = 50.0 68.41 ± 0.16 71.42 ± 0.19 64.62 ± 0.17 67.96 ± 0.19 58.08 ± 0.19 61.68 ± 0.21 47.33 ± 0.20 50.71 ± 0.22
Absolute T = 25.0 68.13 ± 0.16 71.17 ± 0.18 64.69 ± 0.17 68.00 ± 0.19 58.30 ± 0.18 61.98 ± 0.21 47.39 ± 0.20 50.59 ± 0.22
Absolute T = 10.0 67.18 ± 0.16 70.10 ± 0.19 64.14 ± 0.17 67.29 ± 0.20 58.12 ± 0.19 61.65 ± 0.21 47.02 ± 0.21 49.68 ± 0.22
Absolute T = 5.0 63.97 ± 0.17 66.78 ± 0.19 60.96 ± 0.18 63.88 ± 0.20 55.24 ± 0.19 58.17 ± 0.21 44.28 ± 0.21 46.50 ± 0.22
Absolute T = 1.0 50.02 ± 0.19 51.77 ± 0.22 47.71 ± 0.20 49.01 ± 0.22 42.90 ± 0.20 44.45 ± 0.23 34.52 ± 0.20 35.08 ± 0.21

Euclidean T = 50.0 68.31 ± 0.16 71.14 ± 0.18 64.25 ± 0.17 67.53 ± 0.19 57.43 ± 0.18 60.95 ± 0.21 47.06 ± 0.20 50.34 ± 0.21
Euclidean T = 25.0 68.51 ± 0.16 71.28 ± 0.18 64.57 ± 0.17 67.89 ± 0.19 58.01 ± 0.18 61.61 ± 0.20 47.25 ± 0.20 50.49 ± 0.21
Euclidean T = 10.0 68.19 ± 0.16 71.20 ± 0.18 64.55 ± 0.17 68.02 ± 0.19 58.17 ± 0.19 62.00 ± 0.21 47.24 ± 0.20 50.86 ± 0.22
Euclidean T = 5.0 67.58 ± 0.16 70.45 ± 0.18 64.25 ± 0.17 67.55 ± 0.19 57.82 ± 0.19 61.69 ± 0.21 46.34 ± 0.20 50.21 ± 0.22
Euclidean T = 1.0 56.94 ± 0.18 59.04 ± 0.21 53.59 ± 0.19 55.57 ± 0.22 47.23 ± 0.20 49.63 ± 0.22 37.32 ± 0.20 39.37 ± 0.22
Cosine T = 10.0 68.41 ± 0.16 71.20 ± 0.18 64.19 ± 0.17 67.48 ± 0.19 57.33 ± 0.18 60.87 ± 0.21 47.02 ± 0.20 50.12 ± 0.21
Cosine T = 5.0 68.29 ± 0.16 71.28 ± 0.19 64.04 ± 0.17 67.46 ± 0.20 57.30 ± 0.18 61.10 ± 0.21 47.08 ± 0.20 50.27 ± 0.21
Cosine T = 2.0 68.29 ± 0.16 71.20 ± 0.18 64.13 ± 0.17 67.53 ± 0.19 57.39 ± 0.18 61.07 ± 0.20 46.97 ± 0.20 50.23 ± 0.21
Cosine T = 1.0 68.30 ± 0.16 71.54 ± 0.18 64.23 ± 0.17 68.07 ± 0.19 57.51 ± 0.18 61.82 ± 0.20 46.89 ± 0.20 50.82 ± 0.21
Cosine T = 0.5 68.35 ± 0.16 71.38 ± 0.18 64.51 ± 0.17 68.16 ± 0.19 57.97 ± 0.18 62.13 ± 0.20 47.28 ± 0.20 51.14 ± 0.22
Cosine T = 0.2 68.20 ± 0.16 70.79 ± 0.18 64.78 ± 0.17 67.94 ± 0.19 58.36 ± 0.18 62.37 ± 0.21 47.34 ± 0.20 51.12 ± 0.22
Cosine T = 0.1 67.82 ± 0.16 69.33 ± 0.19 64.49 ± 0.17 66.55 ± 0.20 58.42 ± 0.19 61.21 ± 0.21 46.90 ± 0.21 50.00 ± 0.22

Table 14. Ablation study: Clean Prototype Loss for a 3-layer
TraNFS trained on 5-way 5-shot MiniImageNet [54].

λc 0% 20% 40% 60%

0.0 63.77 ± 0.18 60.67 ± 0.19 53.14 ± 0.22 39.75 ± 0.23
0.1 65.68 ± 0.18 61.94 ± 0.19 53.45 ± 0.22 39.20 ± 0.24
0.5 68.11 ± 0.17 64.56 ± 0.18 56.47 ± 0.21 41.94 ± 0.24
1.0 68.80 ± 0.16 65.10 ± 0.18 57.26 ± 0.21 42.82 ± 0.24
5.0 68.53 ± 0.17 65.08 ± 0.18 56.65 ± 0.21 42.60 ± 0.24

10.0 68.76 ± 0.17 64.87 ± 0.18 56.76 ± 0.21 42.17 ± 0.24

0.18, 35.67 ± 0.17} on 5-way 5-shot MiniImageNet [54]
with {0%, 20%, 40%, 60%} symmetric label swap noise.
As reported in the literature, NegMargin outperforms the
ProtoNet pre-trained feature extractor when there is no sup-
port set noise during meta-test. On the other hand, NegMar-
gin sees a steeper decline in performance with increasing
noise levels. We thus focus on the ProtoNet pre-trained fea-
ture extractor for our primary experiments. We leave further
investigation into this phenomenon and the performance of
other feature extractor pre-training objectives on noisy few-
shot learning to future work.

Proposed ProtoNet variants: Temperature settings. As
explained in Sec. 4.2, the temperature T controls the dif-
fuseness of the softmax for similarity weighted prototypes.
The setting of T results in a trade-off between emphasiz-
ing more shots versus noise rejection capability and thus
can have an impact on performance. We show performance
of similarity weighted prototypes with absolute distance,
squared euclidean distance, and cosine similarity measure
on MiniImageNet and TieredImageNet at varying noise lev-
els with symmetric label swap noise, paired label swap
noise, and outlier noise in Tables 11, 12, and 13, respec-
tively. Note that differences in scale of T for Absolute
and Squared Euclidean distances versus cosine similarity is
due to their scale: cosine similarity is within [−1, 1], while

Table 15. Ablation study: Binary Classification Loss for a 3-
layer TraNFS trained on 5-way 5-shot MiniImageNet [54].

λb 0% 20% 40% 60%

0.0 68.74 ± 0.17 64.97 ± 0.18 56.29 ± 0.21 41.88 ± 0.23
0.1 68.73 ± 0.17 65.04 ± 0.18 56.57 ± 0.21 42.23 ± 0.24
0.5 68.53 ± 0.17 65.08 ± 0.18 56.65 ± 0.21 42.60 ± 0.24
1.0 68.74 ± 0.17 64.81 ± 0.18 56.44 ± 0.21 42.26 ± 0.24
5.0 68.75 ± 0.17 65.06 ± 0.18 56.71 ± 0.21 42.42 ± 0.24

Figure 7. Sweep of number of transformer layers for 5-way 5-shot
MiniImageNet [54] with symmetric label swap noise.

the two distances depend on the feature dimensionality and
scale.

TraNFS: Clean prototype loss. We run a hyperparame-
ter sweep for the loss weight term λc, which controls the
weight of the clean prototype loss (Eq. (15)). Results are re-
ported in Table 14. We observe that the clean prototype loss
is indeed helpful for encouraging the transformer to learn
how to reject noisy samples, with a range of values of λc

that work well.

TraNFS: Binary outlier detection. To test the effective-
ness of the binary outlier classifier loss (Eq. (16)), we run a

17

Table 16. Ablation study: choice of embedding for CLS tokens for a 3-layer TraNFS trained on 5-way 5-shot MiniImageNet [54] with
symmetric label swap noise.

CLS Token + POS Token 0% 20% 40% 60%

Prototype + Learnable 68.15 ± 0.16 64.68 ± 0.18 55.04 ± 0.21 41.12 ± 0.22
Learnable + Learnable 67.74 ± 0.17 64.28 ± 0.18 55.46 ± 0.22 41.42 ± 0.24

Random Constant + Random Constant 66.95 ± 0.17 63.34 ± 0.19 54.55 ± 0.22 40.87 ± 0.24
Random Constant + Learnable 68.53 ± 0.17 65.08 ± 0.18 56.65 ± 0.21 42.60 ± 0.24

hyperparameter sweep for the loss weight term λb, report-
ing results in Table 15. We find that binary outlier classifier
is indeed effective, with relatively low sensitivity to the set-
ting of λb. Thus, we set λb to be 0.5 throughout our other
experiments.

TraNFS: CLS and POS token embeddings. There are
several options for the embeddings, corresponding to the
CLS and POS tokens. In Table 16, we meta-train a 3-layer
TraNFS model on 5-shot 5-way MiniImageNet with sym-
metric label swap noise. Each class’s CLS token is set us-
ing one of three options: class prototypes averaged from
the convolutional embeddings, a learnable parameter, and a
random constant.

While we expected the ProtoNet-style prototypes to help
kick-start the transformer’s comparison mechanism, we
were surprised to instead observe that they underperform
other choices for the CLS embeddings. After visualizing
the learning curves, we observe that using prototypes as the
CLS embeddings results in a difficult-to-escape local mini-
mum; we hypothesize this may be the model having mini-
mal incentive to learn anything beyond the provided proto-
type. We also find that learnable CLS embeddings are not
particularly effective: due to the random identity and shuf-
fling of class orders between tasks, each CLS embedding
lacks any semantic meaning beyond corresponding to a par-
ticular POS token’s support samples; thus trying to learn
some discriminitive value does not transfer between tasks
and is ultimately unhelpful. As a result, it appears that a
random constant value for each CLS token is sufficient for
the transformer. For the POS positional encodings, how-
ever, learnable embeddings seem to work best.

TraNFS: Number of layers. Fig. 7 reports results for a
sweep over the number of transformer layers in TraNFS.
Matching intuition, we find that one layer is insufficient for
surpassing the mean (ProtoNet) baseline. Different classes
for each N -way episode mean the CLS embedding do not
generalize across tasks. Without prior information of what
each class c is in an episode, the transformer needs at least
one layer to form such a concept for each position before
comparisons can be made to identify samples that do not
belong. Training with too many layers, however, seems to
occasionally be unstable and tends to produce slightly infe-
rior results, perhaps due to too much overparameterization
and overfitting. We find two or three layers tend to per-
form best and thus report most of our results as such. More

layers in the transformer of course increases computational
costs, but techniques such as knowledge distillation [21,29]
can be used to reduce model size while minimizing perfor-
mance loss.

18

	. Introduction
	. Related work
	. Preliminaries
	. Static alternatives to the mean
	. Spatial median prototypes
	. Similarity weighted prototypes

	. Learning a prototype aggregator
	. A transformer model for noisy FSL
	. Optimization

	. Experiments
	. Experimental setup
	. Noisy few-shot results
	. Visualizing transformer attention to noise
	. Ablations: Meta-training noise proportion

	. Conclusion
	. Noisy support set examples
	. A Note On Median Complexity
	. Different number of shots
	. 3-shot MiniImageNet
	. 10-shot MiniImageNet

	. Method descriptions
	. Additional ablation studies

